import torch import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import torch.nn as nn import torch.nn.functional as F class ANN_Model(nn.Module): def __init__(self,input_features=82,hidden1=20,hidden2=20,out_features=3): super().__init__() self.f_connected1=nn.Linear(input_features,hidden1) self.f_connected2=nn.Linear(hidden1,hidden2) self.out=nn.Linear(hidden2,out_features) def forward(self, x): x=F.relu(self.f_connected1(x)) x=F.relu(self.f_connected2(x)) x=self.out(x) return x data = pd.read_csv("Sales.csv") data["Profit_Category"] = pd.cut(data["Profit"], bins=[-np.inf, 500, 1000, np.inf], labels=[0, 1, 2]) bike = data.loc[:, ['Customer_Age', 'Customer_Gender', 'Country','State', 'Product_Category', 'Sub_Category', 'Profit_Category']] bikes = pd.get_dummies(bike, columns=['Country', 'State', 'Product_Category', 'Sub_Category', 'Customer_Gender']) X = bikes.drop('Profit_Category', axis=1).values y = bikes['Profit_Category'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) scaler = StandardScaler() X_test = scaler.fit_transform(X_test) X_test = torch.FloatTensor(X_test) y_test = torch.LongTensor(y_test) model = torch.load("classificationn_model.pt") model.eval() with torch.no_grad(): y_pred = model(X_test) _, predicted = torch.max(y_pred.data, 1) np.savetxt("predictions1.txt", predicted.numpy(), fmt='%d')