117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torch.nn.functional as F
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import StandardScaler
|
|
import pandas as pd
|
|
import numpy as np
|
|
import os
|
|
import mlflow
|
|
import mlflow.pytorch
|
|
from mlflow.models.signature import infer_signature
|
|
from urllib.parse import urlparse
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.WARN)
|
|
logger = logging.getLogger(__name__)
|
|
mlflow.set_tracking_uri("http://localhost:5000")
|
|
mlflow.set_experiment("s487194")
|
|
|
|
# Wczytanie danych
|
|
print(os.getcwd())
|
|
data = pd.read_csv("./Sales.csv")
|
|
|
|
# Przygotowanie danych
|
|
data["Profit_Category"] = pd.cut(data["Profit"], bins=[-np.inf, 500, 1000, np.inf], labels=[0, 1, 2])
|
|
bike = data.loc[:, ['Customer_Age', 'Customer_Gender', 'Country','State', 'Product_Category', 'Sub_Category', 'Profit_Category']]
|
|
bikes = pd.get_dummies(bike, columns=['Country', 'State', 'Product_Category', 'Sub_Category', 'Customer_Gender'])
|
|
X = bikes.drop('Profit_Category', axis=1).values
|
|
y = bikes['Profit_Category'].values
|
|
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=0)
|
|
scaler = StandardScaler()
|
|
X = scaler.fit_transform(X)
|
|
#### Tworzenie tensorów
|
|
X_train = X_train.astype(np.float32)
|
|
X_test = X_test.astype(np.float32)
|
|
y_train = y_train.astype(np.float32)
|
|
y_test = y_test.astype(np.float32)
|
|
X_train = torch.FloatTensor(X_train)
|
|
X_test = torch.FloatTensor(X_test)
|
|
y_train = torch.LongTensor(y_train)
|
|
y_test = torch.LongTensor(y_test)
|
|
|
|
#### Model
|
|
|
|
class ANN_Model(nn.Module):
|
|
def __init__(self,input_features=82,hidden1=20,hidden2=20,out_features=3):
|
|
super().__init__()
|
|
self.f_connected1=nn.Linear(input_features,hidden1)
|
|
self.f_connected2=nn.Linear(hidden1,hidden2)
|
|
self.out=nn.Linear(hidden2,out_features)
|
|
def forward(self, x):
|
|
x=F.relu(self.f_connected1(x))
|
|
x=F.relu(self.f_connected2(x))
|
|
x=self.out(x)
|
|
return x
|
|
|
|
|
|
torch.manual_seed(20)
|
|
model = ANN_Model()
|
|
|
|
def calculate_accuracy(model, X, y):
|
|
with torch.no_grad():
|
|
outputs = model(X)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total = y.size(0)
|
|
correct = (predicted == y).sum().item()
|
|
accuracy = correct / total * 100
|
|
return accuracy
|
|
|
|
loss_function = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
|
|
|
epochs = 100
|
|
final_losses = []
|
|
accuracy_list = []
|
|
|
|
with mlflow.start_run() as run:
|
|
# Logowanie parametrów modelu
|
|
mlflow.log_param("hidden_layer_1", 20)
|
|
mlflow.log_param("hidden_layer_2", 20)
|
|
mlflow.log_param("output_layer", 3)
|
|
mlflow.log_param("learning_rate", 0.01)
|
|
mlflow.log_param("epochs", epochs)
|
|
|
|
for i in range(epochs):
|
|
i = i + 1
|
|
y_pred = model.forward(X_train)
|
|
loss = loss_function(y_pred, y_train)
|
|
final_losses.append(loss)
|
|
|
|
train_accuracy = calculate_accuracy(model, X_train, y_train)
|
|
test_accuracy = calculate_accuracy(model, X_test, y_test)
|
|
|
|
# Logowanie metryk po każdej epoce
|
|
mlflow.log_metric("train_loss", loss.item(), step=i)
|
|
mlflow.log_metric("train_accuracy", train_accuracy, step=i)
|
|
mlflow.log_metric("test_accuracy", test_accuracy, step=i)
|
|
|
|
print(f"Epoch: {i}, Loss: {loss.item()}, Train Accuracy: {train_accuracy}%, Test Accuracy: {test_accuracy}%")
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
torch.save(model,"classificationn_model.pt")
|
|
signature = infer_signature(X_train.numpy(), model(X_train).detach().numpy())
|
|
input_example = {"input": X_train[0].numpy().tolist()}
|
|
|
|
# Log model
|
|
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
|
if tracking_url_type_store != "file":
|
|
mlflow.pytorch.log_model(model, "model", signature=signature, input_example=input_example, registered_model_name="ClassificationModel")
|
|
else:
|
|
mlflow.pytorch.log_model(model, "model", signature=signature, input_example=input_example)
|
|
|
|
|