ium_487197/ium_predict.py

88 lines
3.0 KiB
Python
Raw Normal View History

2023-05-12 01:16:44 +02:00
from keras.models import load_model
2023-05-11 17:47:16 +02:00
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
import math
import numpy as np
2023-05-12 01:16:44 +02:00
import os.path
import argparse
import matplotlib.pyplot as plt
import shutil
2023-05-11 17:47:16 +02:00
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post", "CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
def predict():
2023-05-12 01:16:44 +02:00
parser = argparse.ArgumentParser(description='Pred')
parser.add_argument('-build', type=int, default=1)
args = parser.parse_args()
shutil.unpack_archive('baltimore.zip', 'baltimore_model', 'zip')
model = load_model('baltimore_model')
2023-05-11 17:47:16 +02:00
train = pd.read_csv('baltimore_train.csv')
baltimore_data_test = pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
2023-05-12 01:16:44 +02:00
y_predicted = np.argmax(y_predicted, axis=1)
2023-05-11 17:47:16 +02:00
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
2023-05-12 01:16:44 +02:00
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
if os.path.exists("metrics.csv"):
df = pd.read_csv('metrics.csv')
data = {
'build': [args.build],
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
2023-05-12 01:40:40 +02:00
row = pd.DataFrame(data)
2023-05-12 01:16:44 +02:00
if df['build'].isin([int(args.build)]).any():
df[df['build'] == args.build] = row.iloc[0]
else:
df = pd.concat([df, row])
df['build'] = df['build'].astype('int')
df.to_csv('metrics.csv', index=False)
else:
data = {
'build': [args.build],
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
df = pd.DataFrame(data)
df['build'] = df['build'].astype('int')
df.to_csv('metrics.csv', index=False)
plt.plot(df['build'], df['mse'], label="mse")
plt.plot(df['build'], df['rmse'], label="rmse")
plt.plot(df['build'], df['accuracy'], label="accuracy")
plt.legend()
plt.show()
plt.savefig('metrics_img.png')
2023-05-11 17:47:16 +02:00
predict()