5_python_scripts

This commit is contained in:
Wojciech Lidwin 2023-05-11 17:47:16 +02:00
parent 727d3f071b
commit 7b863a88f3
2 changed files with 101 additions and 0 deletions

46
ium_predict.py Normal file
View File

@ -0,0 +1,46 @@
from keras.models import Sequential, load_model
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
import math
import numpy as np
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post", "CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
def predict():
model = load_model('baltimore_model3')
train = pd.read_csv('baltimore_train.csv')
baltimore_data_test = pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted,axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
predict()

55
ium_train.py Normal file
View File

@ -0,0 +1,55 @@
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post", "CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
def train_model():
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=0.01), loss='sparse_categorical_crossentropy', metrics = ['accuracy'] )
model.summary()
history = model.fit(
x_train,
y_train,
epochs=20,
validation_split=0.2)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
model.save('baltimore_model3')
train_model()