10_dvc_without_jenkins

This commit is contained in:
Wojciech Lidwin 2023-05-12 12:32:50 +02:00
parent b003a1d5ad
commit 7dd2475f24
75 changed files with 270305 additions and 12023 deletions

5
.dvc/config Normal file
View File

@ -0,0 +1,5 @@
[core]
no_scm = True
remote = ium_ssh_remote
['remote "ium_ssh_remote"']
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl

2
.dvc/config.local Normal file
View File

@ -0,0 +1,2 @@
['remote "ium_ssh_remote"']
password = IUM@2021

1
.dvc/tmp/lock Normal file
View File

@ -0,0 +1 @@
27860

3
.dvcignore Normal file
View File

@ -0,0 +1,3 @@
# Add patterns of files dvc should ignore, which could improve
# the performance. Learn more at
# https://dvc.org/doc/user-guide/dvcignore

View File

@ -12,7 +12,6 @@ RUN pip3 install seaborn
RUN pip3 install numpy
RUN pip3 install keras
RUN pip3 install tensorflow
RUN pip3 install scikit-learn
RUN pip3 install argparse
RUN pip3 install matplotlib
RUN pip3 install sacred

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

17
dvc.yml Normal file
View File

@ -0,0 +1,17 @@
stages:
prepare:
cmd: data.py
deps:
- data.py
- BPD_Part_1_Victim_Based_Crime_Data.csv
outs:
- baltimore_test.csv
- baltimore_train.csv
- baltimore_dev.csv
train:
cmd: ium_train.py
deps:
- ium_train.py
- baltimore_train.csv
outs:
- baltimore.zip

View File

@ -11,10 +11,6 @@ import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
ex = Experiment('s487197-train', save_git_info=False)
def get_x_y(data):
@ -30,31 +26,14 @@ def get_x_y(data):
return data, x, y
@ex.config
def my_config():
def train_model():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs=args.epochs
lr=args.lr
validation_split=args.validation_split
return args
@ex.automain
def train_model(config):
# parser = argparse.ArgumentParser(description='Train')
# parser.add_argument('-epochs', type=int, default=20)
# parser.add_argument('-lr', type=float, default=0.01)
#parser.add_argument('-validation_split', type=float, default=0.2)
ex.observers.append(FileStorageObserver('s487197'))
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
args = config
train = pd.read_csv('baltimore_train.csv')
@ -81,5 +60,5 @@ def train_model(config):
shutil.make_archive('baltimore', 'zip', 'baltimore_model')
train_model(my_config())
train_model()

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 743485559,
"validation_split": 0.2
}

83
sacred_results/1/cout.txt Normal file
View File

@ -0,0 +1,83 @@
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
normalization (Normalizatio (None, 4) 9
n)
dense (Dense) (None, 64) 320
dense_1 (Dense) (None, 10) 650
dense_2 (Dense) (None, 10) 110
dense_3 (Dense) (None, 10) 110
dense_4 (Dense) (None, 5) 55
=================================================================
Total params: 1,254
Trainable params: 1,245
Non-trainable params: 9
_________________________________________________________________
Epoch 1/20
1/200 [..............................] - ETA: 1:17 - loss: 1.5801 - accuracy: 0.5312 70/200 [=========>....................] - ETA: 0s - loss: 0.8091 - accuracy: 0.6902  142/200 [====================>.........] - ETA: 0s - loss: 0.5649 - accuracy: 0.7795 200/200 [==============================] - 1s 2ms/step - loss: 0.4757 - accuracy: 0.8151 - val_loss: 0.2506 - val_accuracy: 0.8931
Epoch 2/20
1/200 [..............................] - ETA: 0s - loss: 0.1264 - accuracy: 0.9375 68/200 [=========>....................] - ETA: 0s - loss: 0.2639 - accuracy: 0.8902 132/200 [==================>...........] - ETA: 0s - loss: 0.2225 - accuracy: 0.9105 198/200 [============================>.] - ETA: 0s - loss: 0.2061 - accuracy: 0.9192 200/200 [==============================] - 0s 1ms/step - loss: 0.2053 - accuracy: 0.9198 - val_loss: 0.2247 - val_accuracy: 0.8956
Epoch 3/20
1/200 [..............................] - ETA: 0s - loss: 0.4937 - accuracy: 0.8125 65/200 [========>.....................] - ETA: 0s - loss: 0.2858 - accuracy: 0.8990 138/200 [===================>..........] - ETA: 0s - loss: 0.2326 - accuracy: 0.9187 193/200 [===========================>..] - ETA: 0s - loss: 0.2153 - accuracy: 0.9229 200/200 [==============================] - 0s 1ms/step - loss: 0.2130 - accuracy: 0.9239 - val_loss: 0.1631 - val_accuracy: 0.9287
Epoch 4/20
1/200 [..............................] - ETA: 0s - loss: 0.1936 - accuracy: 0.9375 70/200 [=========>....................] - ETA: 0s - loss: 0.1466 - accuracy: 0.9415 141/200 [====================>.........] - ETA: 0s - loss: 0.1494 - accuracy: 0.9395 200/200 [==============================] - 0s 971us/step - loss: 0.1454 - accuracy: 0.9395 - val_loss: 0.1593 - val_accuracy: 0.9275
Epoch 5/20
1/200 [..............................] - ETA: 0s - loss: 0.1037 - accuracy: 0.9375 71/200 [=========>....................] - ETA: 0s - loss: 0.1510 - accuracy: 0.9375 142/200 [====================>.........] - ETA: 0s - loss: 0.1478 - accuracy: 0.9401 200/200 [==============================] - 0s 978us/step - loss: 0.1421 - accuracy: 0.9425 - val_loss: 0.1440 - val_accuracy: 0.9269
Epoch 6/20
1/200 [..............................] - ETA: 0s - loss: 0.1472 - accuracy: 0.9375 68/200 [=========>....................] - ETA: 0s - loss: 0.1387 - accuracy: 0.9481 141/200 [====================>.........] - ETA: 0s - loss: 0.1389 - accuracy: 0.9473 200/200 [==============================] - 0s 968us/step - loss: 0.1373 - accuracy: 0.9481 - val_loss: 0.1467 - val_accuracy: 0.9275
Epoch 7/20
1/200 [..............................] - ETA: 0s - loss: 0.1939 - accuracy: 0.9062 72/200 [=========>....................] - ETA: 0s - loss: 0.1466 - accuracy: 0.9405 139/200 [===================>..........] - ETA: 0s - loss: 0.1615 - accuracy: 0.9442 200/200 [==============================] - 0s 961us/step - loss: 0.2264 - accuracy: 0.9217 - val_loss: 0.2458 - val_accuracy: 0.9069
Epoch 8/20
1/200 [..............................] - ETA: 0s - loss: 0.3132 - accuracy: 0.8750 71/200 [=========>....................] - ETA: 0s - loss: 0.1977 - accuracy: 0.9291 140/200 [====================>.........] - ETA: 0s - loss: 0.1824 - accuracy: 0.9350 200/200 [==============================] - 0s 977us/step - loss: 0.1754 - accuracy: 0.9376 - val_loss: 0.1665 - val_accuracy: 0.9237
Epoch 9/20
1/200 [..............................] - ETA: 0s - loss: 0.3530 - accuracy: 0.8438 69/200 [=========>....................] - ETA: 0s - loss: 0.1742 - accuracy: 0.9330 142/200 [====================>.........] - ETA: 0s - loss: 0.1587 - accuracy: 0.9430 200/200 [==============================] - 0s 963us/step - loss: 0.1532 - accuracy: 0.9458 - val_loss: 0.1558 - val_accuracy: 0.9337
Epoch 10/20
1/200 [..............................] - ETA: 0s - loss: 0.0859 - accuracy: 0.9688 68/200 [=========>....................] - ETA: 0s - loss: 0.1445 - accuracy: 0.9563 137/200 [===================>..........] - ETA: 0s - loss: 0.1357 - accuracy: 0.9557 200/200 [==============================] - 0s 986us/step - loss: 0.1363 - accuracy: 0.9523 - val_loss: 0.1488 - val_accuracy: 0.9519
Epoch 11/20
1/200 [..............................] - ETA: 0s - loss: 0.1136 - accuracy: 0.9688 71/200 [=========>....................] - ETA: 0s - loss: 0.1323 - accuracy: 0.9582 138/200 [===================>..........] - ETA: 0s - loss: 0.1300 - accuracy: 0.9577 200/200 [==============================] - 0s 965us/step - loss: 0.1360 - accuracy: 0.9533 - val_loss: 0.1379 - val_accuracy: 0.9594
Epoch 12/20
1/200 [..............................] - ETA: 0s - loss: 0.1272 - accuracy: 0.9688 70/200 [=========>....................] - ETA: 0s - loss: 0.1273 - accuracy: 0.9558 141/200 [====================>.........] - ETA: 0s - loss: 0.1340 - accuracy: 0.9535 200/200 [==============================] - 0s 974us/step - loss: 0.1399 - accuracy: 0.9500 - val_loss: 0.1596 - val_accuracy: 0.9331
Epoch 13/20
1/200 [..............................] - ETA: 0s - loss: 0.3119 - accuracy: 0.8750 69/200 [=========>....................] - ETA: 0s - loss: 0.2623 - accuracy: 0.9094 137/200 [===================>..........] - ETA: 0s - loss: 0.2135 - accuracy: 0.9281 200/200 [==============================] - 0s 969us/step - loss: 0.1915 - accuracy: 0.9369 - val_loss: 0.1526 - val_accuracy: 0.9294
Epoch 14/20
1/200 [..............................] - ETA: 0s - loss: 0.1455 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1483 - accuracy: 0.9468 136/200 [===================>..........] - ETA: 0s - loss: 0.1708 - accuracy: 0.9403 200/200 [==============================] - 0s 967us/step - loss: 0.1559 - accuracy: 0.9458 - val_loss: 0.1417 - val_accuracy: 0.9575
Epoch 15/20
1/200 [..............................] - ETA: 0s - loss: 0.1071 - accuracy: 0.9375 72/200 [=========>....................] - ETA: 0s - loss: 0.1138 - accuracy: 0.9618 139/200 [===================>..........] - ETA: 0s - loss: 0.1219 - accuracy: 0.9611 200/200 [==============================] - 0s 954us/step - loss: 0.1286 - accuracy: 0.9580 - val_loss: 0.1347 - val_accuracy: 0.9581
Epoch 16/20
1/200 [..............................] - ETA: 0s - loss: 0.0978 - accuracy: 0.9688 71/200 [=========>....................] - ETA: 0s - loss: 0.1310 - accuracy: 0.9591 142/200 [====================>.........] - ETA: 0s - loss: 0.1285 - accuracy: 0.9571 200/200 [==============================] - 0s 964us/step - loss: 0.1322 - accuracy: 0.9559 - val_loss: 0.1416 - val_accuracy: 0.9581
Epoch 17/20
1/200 [..............................] - ETA: 0s - loss: 0.1309 - accuracy: 0.9688 73/200 [=========>....................] - ETA: 0s - loss: 0.1378 - accuracy: 0.9563 145/200 [====================>.........] - ETA: 0s - loss: 0.1389 - accuracy: 0.9534 200/200 [==============================] - 0s 941us/step - loss: 0.1344 - accuracy: 0.9551 - val_loss: 0.1389 - val_accuracy: 0.9594
Epoch 18/20
1/200 [..............................] - ETA: 0s - loss: 1.5093e-04 - accuracy: 1.0000 61/200 [========>.....................] - ETA: 0s - loss: 0.1352 - accuracy: 0.9544  128/200 [==================>...........] - ETA: 0s - loss: 0.1287 - accuracy: 0.9568 200/200 [==============================] - ETA: 0s - loss: 0.1270 - accuracy: 0.9575 200/200 [==============================] - 0s 1ms/step - loss: 0.1270 - accuracy: 0.9575 - val_loss: 0.1362 - val_accuracy: 0.9594
Epoch 19/20
1/200 [..............................] - ETA: 0s - loss: 0.1404 - accuracy: 0.9688 69/200 [=========>....................] - ETA: 0s - loss: 0.1217 - accuracy: 0.9579 139/200 [===================>..........] - ETA: 0s - loss: 0.1347 - accuracy: 0.9530 200/200 [==============================] - 0s 959us/step - loss: 0.1296 - accuracy: 0.9542 - val_loss: 0.1349 - val_accuracy: 0.9594
Epoch 20/20
1/200 [..............................] - ETA: 0s - loss: 0.3190 - accuracy: 0.8750 68/200 [=========>....................] - ETA: 0s - loss: 0.1388 - accuracy: 0.9550 133/200 [==================>...........] - ETA: 0s - loss: 0.1288 - accuracy: 0.9594 192/200 [===========================>..] - ETA: 0s - loss: 0.1266 - accuracy: 0.9585 200/200 [==============================] - 0s 1ms/step - loss: 0.1274 - accuracy: 0.9583 - val_loss: 0.1385 - val_accuracy: 0.9575
loss accuracy val_loss val_accuracy epoch
0 0.475650 0.815127 0.250621 0.893125 0
1 0.205338 0.919831 0.224716 0.895625 1
2 0.212970 0.923894 0.163060 0.928750 2
3 0.145409 0.939522 0.159278 0.927500 3
4 0.142135 0.942491 0.144023 0.926875 4
5 0.137297 0.948117 0.146737 0.927500 5
6 0.226381 0.921706 0.245775 0.906875 6
7 0.175432 0.937647 0.166548 0.923750 7
8 0.153183 0.945773 0.155808 0.933750 8
9 0.136298 0.952336 0.148819 0.951875 9
10 0.135954 0.953274 0.137862 0.959375 10
11 0.139950 0.949992 0.159633 0.933125 11
12 0.191454 0.936865 0.152623 0.929375 12
13 0.155906 0.945773 0.141746 0.957500 13
14 0.128649 0.957962 0.134679 0.958125 14
15 0.132179 0.955931 0.141568 0.958125 15
16 0.134409 0.955149 0.138940 0.959375 16
17 0.127008 0.957493 0.136193 0.959375 17
18 0.129558 0.954212 0.134924 0.959375 18
19 0.127444 0.958275 0.138473 0.957500 19

View File

@ -0,0 +1 @@
{}

76
sacred_results/1/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_03738d7fa8ddda89ca2fe431c513ef98.py"
]
]
},
"heartbeat": "2023-05-12T01:45:11.950417",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": 0,
"start_time": "2023-05-12T01:45:04.424851",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:45:11.949896"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 141586382,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_1e58b1af60742a0afc8f9272cd797079.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:00:48.492068",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:55.084941"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 542777191,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_9091c162cd6f6a5705b52b4eafa4d986.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:01:20.479109",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:01:26.200103"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 919803566,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_ec32466b205ec0b0b90ad1278e6f01ff.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:01:52.420346",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:01:58.218217"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 387787872,
"validation_split": 0.2
}

View File

@ -0,0 +1,62 @@
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
normalization (Normalizatio (None, 4) 9
n)
dense (Dense) (None, 64) 320
dense_1 (Dense) (None, 10) 650
dense_2 (Dense) (None, 10) 110
dense_3 (Dense) (None, 10) 110
dense_4 (Dense) (None, 5) 55
=================================================================
Total params: 1,254
Trainable params: 1,245
Non-trainable params: 9
_________________________________________________________________
Epoch 1/20
1/200 [..............................] - ETA: 1:42 - loss: 1.6469 - accuracy: 0.0625 35/200 [====>.........................] - ETA: 0s - loss: 1.0588 - accuracy: 0.6205  71/200 [=========>....................] - ETA: 0s - loss: 0.8379 - accuracy: 0.6937 109/200 [===============>..............] - ETA: 0s - loss: 0.6690 - accuracy: 0.7491 167/200 [========================>.....] - ETA: 0s - loss: 0.5336 - accuracy: 0.7990 200/200 [==============================] - 1s 2ms/step - loss: 0.4828 - accuracy: 0.8181 - val_loss: 0.2411 - val_accuracy: 0.9162
Epoch 2/20
1/200 [..............................] - ETA: 0s - loss: 0.2541 - accuracy: 0.9062 68/200 [=========>....................] - ETA: 0s - loss: 0.2156 - accuracy: 0.9154 135/200 [===================>..........] - ETA: 0s - loss: 0.1996 - accuracy: 0.9243 200/200 [==============================] - 0s 1ms/step - loss: 0.1881 - accuracy: 0.9284 - val_loss: 0.1701 - val_accuracy: 0.9275
Epoch 3/20
1/200 [..............................] - ETA: 0s - loss: 0.0257 - accuracy: 1.0000 62/200 [========>.....................] - ETA: 0s - loss: 0.1566 - accuracy: 0.9375 129/200 [==================>...........] - ETA: 0s - loss: 0.1545 - accuracy: 0.9382 193/200 [===========================>..] - ETA: 0s - loss: 0.1551 - accuracy: 0.9388 200/200 [==============================] - 0s 2ms/step - loss: 0.1541 - accuracy: 0.9392 - val_loss: 0.1709 - val_accuracy: 0.9275
Epoch 4/20
1/200 [..............................] - ETA: 0s - loss: 0.0209 - accuracy: 1.0000 68/200 [=========>....................] - ETA: 0s - loss: 0.2249 - accuracy: 0.9168 135/200 [===================>..........] - ETA: 0s - loss: 0.2761 - accuracy: 0.8988 200/200 [==============================] - 0s 998us/step - loss: 0.2380 - accuracy: 0.9139 - val_loss: 0.1782 - val_accuracy: 0.9275
Epoch 5/20
1/200 [..............................] - ETA: 0s - loss: 0.1677 - accuracy: 0.9375 70/200 [=========>....................] - ETA: 0s - loss: 0.1504 - accuracy: 0.9415 139/200 [===================>..........] - ETA: 0s - loss: 0.1517 - accuracy: 0.9402 200/200 [==============================] - 0s 1ms/step - loss: 0.1543 - accuracy: 0.9392 - val_loss: 0.1650 - val_accuracy: 0.9275
Epoch 6/20
1/200 [..............................] - ETA: 0s - loss: 0.1536 - accuracy: 0.9062 50/200 [======>.......................] - ETA: 0s - loss: 0.1602 - accuracy: 0.9362 106/200 [==============>...............] - ETA: 0s - loss: 0.1564 - accuracy: 0.9381 163/200 [=======================>......] - ETA: 0s - loss: 0.1503 - accuracy: 0.9408 200/200 [==============================] - 0s 1ms/step - loss: 0.1528 - accuracy: 0.9392 - val_loss: 0.1668 - val_accuracy: 0.9275
Epoch 7/20
1/200 [..............................] - ETA: 0s - loss: 0.2504 - accuracy: 0.8438 58/200 [=======>......................] - ETA: 0s - loss: 0.1488 - accuracy: 0.9397 116/200 [================>.............] - ETA: 0s - loss: 0.1608 - accuracy: 0.9353 182/200 [==========================>...] - ETA: 0s - loss: 0.1533 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1542 - accuracy: 0.9392 - val_loss: 0.1694 - val_accuracy: 0.9275
Epoch 8/20
1/200 [..............................] - ETA: 0s - loss: 0.1517 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1519 - accuracy: 0.9403 134/200 [===================>..........] - ETA: 0s - loss: 0.1455 - accuracy: 0.9438 200/200 [==============================] - 0s 985us/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1673 - val_accuracy: 0.9275
Epoch 9/20
1/200 [..............................] - ETA: 0s - loss: 0.1589 - accuracy: 0.9375 65/200 [========>.....................] - ETA: 0s - loss: 0.1525 - accuracy: 0.9409 129/200 [==================>...........] - ETA: 0s - loss: 0.1512 - accuracy: 0.9385 188/200 [===========================>..] - ETA: 0s - loss: 0.1517 - accuracy: 0.9397 200/200 [==============================] - 0s 1ms/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1719 - val_accuracy: 0.9275
Epoch 10/20
1/200 [..............................] - ETA: 0s - loss: 0.2366 - accuracy: 0.9062 59/200 [=======>......................] - ETA: 0s - loss: 0.1635 - accuracy: 0.9333 119/200 [================>.............] - ETA: 0s - loss: 0.1574 - accuracy: 0.9349 178/200 [=========================>....] - ETA: 0s - loss: 0.1538 - accuracy: 0.9389 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1679 - val_accuracy: 0.9275
Epoch 11/20
1/200 [..............................] - ETA: 0s - loss: 0.1362 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1433 - accuracy: 0.9403 133/200 [==================>...........] - ETA: 0s - loss: 0.2378 - accuracy: 0.9159 182/200 [==========================>...] - ETA: 0s - loss: 0.2254 - accuracy: 0.9196 200/200 [==============================] - 0s 1ms/step - loss: 0.2225 - accuracy: 0.9200 - val_loss: 0.1731 - val_accuracy: 0.9262
Epoch 12/20
1/200 [..............................] - ETA: 0s - loss: 0.2198 - accuracy: 0.9062 49/200 [======>.......................] - ETA: 0s - loss: 0.1698 - accuracy: 0.9324 96/200 [=============>................] - ETA: 0s - loss: 0.2074 - accuracy: 0.9229 143/200 [====================>.........] - ETA: 0s - loss: 0.1951 - accuracy: 0.9268 188/200 [===========================>..] - ETA: 0s - loss: 0.1828 - accuracy: 0.9312 200/200 [==============================] - 0s 1ms/step - loss: 0.1807 - accuracy: 0.9314 - val_loss: 0.1702 - val_accuracy: 0.9275
Epoch 13/20
1/200 [..............................] - ETA: 0s - loss: 0.1454 - accuracy: 0.9688 61/200 [========>.....................] - ETA: 0s - loss: 0.1535 - accuracy: 0.9375 102/200 [==============>...............] - ETA: 0s - loss: 0.1504 - accuracy: 0.9390 139/200 [===================>..........] - ETA: 0s - loss: 0.1554 - accuracy: 0.9379 188/200 [===========================>..] - ETA: 0s - loss: 0.1534 - accuracy: 0.9393 200/200 [==============================] - 0s 1ms/step - loss: 0.1536 - accuracy: 0.9392 - val_loss: 0.1708 - val_accuracy: 0.9275
Epoch 14/20
1/200 [..............................] - ETA: 0s - loss: 0.1768 - accuracy: 0.9062 45/200 [=====>........................] - ETA: 0s - loss: 0.1386 - accuracy: 0.9458 89/200 [============>.................] - ETA: 0s - loss: 0.1537 - accuracy: 0.9393 127/200 [==================>...........] - ETA: 0s - loss: 0.1514 - accuracy: 0.9407 171/200 [========================>.....] - ETA: 0s - loss: 0.1543 - accuracy: 0.9388 200/200 [==============================] - 0s 1ms/step - loss: 0.1537 - accuracy: 0.9392 - val_loss: 0.1679 - val_accuracy: 0.9275
Epoch 15/20
1/200 [..............................] - ETA: 0s - loss: 0.0631 - accuracy: 0.9688 63/200 [========>.....................] - ETA: 0s - loss: 0.1696 - accuracy: 0.9301 122/200 [=================>............] - ETA: 0s - loss: 0.1608 - accuracy: 0.9357 177/200 [=========================>....] - ETA: 0s - loss: 0.1523 - accuracy: 0.9400 200/200 [==============================] - 0s 1ms/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1683 - val_accuracy: 0.9275
Epoch 16/20
1/200 [..............................] - ETA: 0s - loss: 0.1745 - accuracy: 0.9062 66/200 [========>.....................] - ETA: 0s - loss: 0.1553 - accuracy: 0.9361 131/200 [==================>...........] - ETA: 0s - loss: 0.1586 - accuracy: 0.9361 195/200 [============================>.] - ETA: 0s - loss: 0.1536 - accuracy: 0.9388 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1715 - val_accuracy: 0.9275
Epoch 17/20
1/200 [..............................] - ETA: 0s - loss: 0.1205 - accuracy: 0.9688 68/200 [=========>....................] - ETA: 0s - loss: 0.1562 - accuracy: 0.9375 136/200 [===================>..........] - ETA: 0s - loss: 0.1589 - accuracy: 0.9350 199/200 [============================>.] - ETA: 0s - loss: 0.1527 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1716 - val_accuracy: 0.9275
Epoch 18/20
1/200 [..............................] - ETA: 0s - loss: 0.2231 - accuracy: 0.9062 67/200 [=========>....................] - ETA: 0s - loss: 0.1630 - accuracy: 0.9324 132/200 [==================>...........] - ETA: 0s - loss: 0.1583 - accuracy: 0.9354 199/200 [============================>.] - ETA: 0s - loss: 0.1524 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1529 - accuracy: 0.9392 - val_loss: 0.1697 - val_accuracy: 0.9275
Epoch 19/20
1/200 [..............................] - ETA: 0s - loss: 0.2123 - accuracy: 0.9062 68/200 [=========>....................] - ETA: 0s - loss: 0.1571 - accuracy: 0.9416 134/200 [===================>..........] - ETA: 0s - loss: 0.1584 - accuracy: 0.9373 200/200 [==============================] - ETA: 0s - loss: 0.1523 - accuracy: 0.9392 200/200 [==============================] - 0s 996us/step - loss: 0.1523 - accuracy: 0.9392 - val_loss: 0.1678 - val_accuracy: 0.9275
Epoch 20/20
1/200 [..............................] - ETA: 0s - loss: 0.0634 - accuracy: 1.0000 63/200 [========>.....................] - ETA: 0s - loss: 0.1386 - accuracy: 0.9449 132/200 [==================>...........] - ETA: 0s - loss: 0.1481 - accuracy: 0.9427 200/200 [==============================] - 0s 994us/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1666 - val_accuracy: 0.9275

View File

@ -0,0 +1,138 @@
{
"accuracy": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.8180965781211853,
0.9284263253211975,
0.9392092227935791,
0.9138928055763245,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9199874997138977,
0.9313955307006836,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791
]
},
"training.loss": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.4828028082847595,
0.188060462474823,
0.1540592610836029,
0.23801285028457642,
0.15432630479335785,
0.15283508598804474,
0.15420585870742798,
0.15343832969665527,
0.15339379012584686,
0.15310192108154297,
0.2225472629070282,
0.1807185709476471,
0.15355326235294342,
0.15366053581237793,
0.15342676639556885,
0.15310777723789215,
0.1530904769897461,
0.15290340781211853,
0.1523490697145462,
0.1531151980161667
]
}
}

View File

@ -0,0 +1,81 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_950f0f2f01029cca663d51346afb6be4.py"
]
]
},
"heartbeat": "2023-05-12T02:31:33.766889",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:31:23.145561",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:31:34.124580"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 729055136,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,138 @@
{
"accuracy": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.8296608924865723,
0.9309266805648804,
0.9328020215034485,
0.9182685017585754,
0.9393655061721802,
0.9388967156410217,
0.9393655061721802,
0.9409282803535461,
0.9401469230651855,
0.9278011918067932,
0.9131114482879639,
0.9263947606086731,
0.9490545392036438,
0.9520237445831299,
0.9509298205375671,
0.9556180834770203,
0.9368651509284973,
0.9610876441001892,
0.9592123627662659,
0.9592123627662659
]
},
"training.loss": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.45444533228874207,
0.19581197202205658,
0.18958868086338043,
0.2101736068725586,
0.14783711731433868,
0.14647383987903595,
0.14401419460773468,
0.14188003540039062,
0.13803555071353912,
0.17904537916183472,
0.20916658639907837,
0.18071487545967102,
0.12553374469280243,
0.12510214745998383,
0.1285393238067627,
0.1186068207025528,
0.2004299759864807,
0.10671943426132202,
0.10109587013721466,
0.09748737514019012
]
}
}

View File

@ -0,0 +1,90 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_950f0f2f01029cca663d51346afb6be4.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 82, in my_main\n model.save('baltimore_model')\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py\", line 58, in quick_execute\n except TypeError as e:\n",
"tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__MergeV2Checkpoints_device_/job:localhost/replica:0/task:0/device:CPU:0}} allow_missing_files was set to false and baltimore_model\\variables\\variables_temp/part-00000-of-00001 did not exist.NOT_FOUND: baltimore_model\\variables\\variables_temp/part-00000-of-00001 not found [Op:MergeV2Checkpoints]\n"
],
"heartbeat": "2023-05-12T02:31:32.183758",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:31:23.190178",
"status": "FAILED",
"stop_time": "2023-05-12T02:31:32.850460"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 198446316,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,81 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_dffd3acfe754d92b2302ad2ea90ff77a.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:39:18.207903",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:39:26.632263"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 790781882,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/2/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_9cc2793a97654cf2790c1fbe123bcd01.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 80, in my_main\n print(his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: string indices must be integers, not 'str'\n"
],
"heartbeat": "2023-05-12T01:54:53.653326",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:54:46.870553",
"status": "FAILED",
"stop_time": "2023-05-12T01:54:54.207945"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 266562668,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/3/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_579c32388fa25934923349500b535786.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 81, in my_main\n _run.log_scalar('training.loss', his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: string indices must be integers, not 'str'\n"
],
"heartbeat": "2023-05-12T01:55:15.444781",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:55:08.976651",
"status": "FAILED",
"stop_time": "2023-05-12T01:55:15.771016"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 955027700,
"validation_split": 0.2
}

View File

76
sacred_results/4/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_ad3e1f3bc92f1083dc55135614af4ad1.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:56:25.257367",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:56:31.839801"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 803545125,
"validation_split": 0.2
}

View File

76
sacred_results/5/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_0c451da111a523a7c71d60dc98471150.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:57:06.376366",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:57:12.134024"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 11952978,
"validation_split": 0.2
}

View File

76
sacred_results/6/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_5026556337a68b8efa6648528589a45e.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:58:49.666025",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:58:55.896990"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 721231722,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/7/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_823e254d1aa3fd8c744516bf9f9eba26.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 80, in my_main\n print(his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: tuple indices must be integers or slices, not str\n"
],
"heartbeat": "2023-05-12T01:59:35.227619",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:59:29.000086",
"status": "FAILED",
"stop_time": "2023-05-12T01:59:35.726077"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 603474650,
"validation_split": 0.2
}

View File

76
sacred_results/8/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_fb513b69c34386383d17f6ab8aee64a0.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:59:57.385975",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:03.611204"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 840512587,
"validation_split": 0.2
}

View File

76
sacred_results/9/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_e7097f8c1264234798bc616052caa420.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:00:21.881935",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:28.146176"
}

View File

@ -0,0 +1,110 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
return 0
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
ex.add_artifact('baltimore_model')
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in history.history:
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[1])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist.iterrows():
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist:
print(his)
_run.log_scalar('training.loss', his['loss'])
_run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his['loss'])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[1]['loss'])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,114 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
model.save('baltimore_model')
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run_commandline()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist:
print(his['loss'])
_run.log_scalar('training.loss', his['loss'])
_run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist[1:]:
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,113 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.automain
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
model.save('baltimore_model')
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
#ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,113 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[0])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()