10_dvc_without_jenkins

This commit is contained in:
Wojciech Lidwin 2023-05-12 12:32:50 +02:00
parent b003a1d5ad
commit 7dd2475f24
75 changed files with 270305 additions and 12023 deletions

5
.dvc/config Normal file
View File

@ -0,0 +1,5 @@
[core]
no_scm = True
remote = ium_ssh_remote
['remote "ium_ssh_remote"']
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl

2
.dvc/config.local Normal file
View File

@ -0,0 +1,2 @@
['remote "ium_ssh_remote"']
password = IUM@2021

1
.dvc/tmp/lock Normal file
View File

@ -0,0 +1 @@
27860

3
.dvcignore Normal file
View File

@ -0,0 +1,3 @@
# Add patterns of files dvc should ignore, which could improve
# the performance. Learn more at
# https://dvc.org/doc/user-guide/dvcignore

View File

@ -12,7 +12,6 @@ RUN pip3 install seaborn
RUN pip3 install numpy RUN pip3 install numpy
RUN pip3 install keras RUN pip3 install keras
RUN pip3 install tensorflow RUN pip3 install tensorflow
RUN pip3 install scikit-learn
RUN pip3 install argparse RUN pip3 install argparse
RUN pip3 install matplotlib RUN pip3 install matplotlib
RUN pip3 install sacred RUN pip3 install sacred

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

17
dvc.yml Normal file
View File

@ -0,0 +1,17 @@
stages:
prepare:
cmd: data.py
deps:
- data.py
- BPD_Part_1_Victim_Based_Crime_Data.csv
outs:
- baltimore_test.csv
- baltimore_train.csv
- baltimore_dev.csv
train:
cmd: ium_train.py
deps:
- ium_train.py
- baltimore_train.csv
outs:
- baltimore.zip

View File

@ -11,10 +11,6 @@ import numpy as np
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder
import argparse import argparse
import shutil import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
ex = Experiment('s487197-train', save_git_info=False)
def get_x_y(data): def get_x_y(data):
@ -30,31 +26,14 @@ def get_x_y(data):
return data, x, y return data, x, y
@ex.config def train_model():
def my_config():
parser = argparse.ArgumentParser(description='Train') parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20) parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01) parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2) parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args() args = parser.parse_args()
epochs=args.epochs
lr=args.lr
validation_split=args.validation_split
return args
@ex.automain
def train_model(config):
# parser = argparse.ArgumentParser(description='Train')
# parser.add_argument('-epochs', type=int, default=20)
# parser.add_argument('-lr', type=float, default=0.01)
#parser.add_argument('-validation_split', type=float, default=0.2)
ex.observers.append(FileStorageObserver('s487197'))
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
args = config
train = pd.read_csv('baltimore_train.csv') train = pd.read_csv('baltimore_train.csv')
@ -81,5 +60,5 @@ def train_model(config):
shutil.make_archive('baltimore', 'zip', 'baltimore_model') shutil.make_archive('baltimore', 'zip', 'baltimore_model')
train_model(my_config()) train_model()

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 743485559,
"validation_split": 0.2
}

83
sacred_results/1/cout.txt Normal file
View File

@ -0,0 +1,83 @@
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
normalization (Normalizatio (None, 4) 9
n)
dense (Dense) (None, 64) 320
dense_1 (Dense) (None, 10) 650
dense_2 (Dense) (None, 10) 110
dense_3 (Dense) (None, 10) 110
dense_4 (Dense) (None, 5) 55
=================================================================
Total params: 1,254
Trainable params: 1,245
Non-trainable params: 9
_________________________________________________________________
Epoch 1/20
1/200 [..............................] - ETA: 1:17 - loss: 1.5801 - accuracy: 0.5312 70/200 [=========>....................] - ETA: 0s - loss: 0.8091 - accuracy: 0.6902  142/200 [====================>.........] - ETA: 0s - loss: 0.5649 - accuracy: 0.7795 200/200 [==============================] - 1s 2ms/step - loss: 0.4757 - accuracy: 0.8151 - val_loss: 0.2506 - val_accuracy: 0.8931
Epoch 2/20
1/200 [..............................] - ETA: 0s - loss: 0.1264 - accuracy: 0.9375 68/200 [=========>....................] - ETA: 0s - loss: 0.2639 - accuracy: 0.8902 132/200 [==================>...........] - ETA: 0s - loss: 0.2225 - accuracy: 0.9105 198/200 [============================>.] - ETA: 0s - loss: 0.2061 - accuracy: 0.9192 200/200 [==============================] - 0s 1ms/step - loss: 0.2053 - accuracy: 0.9198 - val_loss: 0.2247 - val_accuracy: 0.8956
Epoch 3/20
1/200 [..............................] - ETA: 0s - loss: 0.4937 - accuracy: 0.8125 65/200 [========>.....................] - ETA: 0s - loss: 0.2858 - accuracy: 0.8990 138/200 [===================>..........] - ETA: 0s - loss: 0.2326 - accuracy: 0.9187 193/200 [===========================>..] - ETA: 0s - loss: 0.2153 - accuracy: 0.9229 200/200 [==============================] - 0s 1ms/step - loss: 0.2130 - accuracy: 0.9239 - val_loss: 0.1631 - val_accuracy: 0.9287
Epoch 4/20
1/200 [..............................] - ETA: 0s - loss: 0.1936 - accuracy: 0.9375 70/200 [=========>....................] - ETA: 0s - loss: 0.1466 - accuracy: 0.9415 141/200 [====================>.........] - ETA: 0s - loss: 0.1494 - accuracy: 0.9395 200/200 [==============================] - 0s 971us/step - loss: 0.1454 - accuracy: 0.9395 - val_loss: 0.1593 - val_accuracy: 0.9275
Epoch 5/20
1/200 [..............................] - ETA: 0s - loss: 0.1037 - accuracy: 0.9375 71/200 [=========>....................] - ETA: 0s - loss: 0.1510 - accuracy: 0.9375 142/200 [====================>.........] - ETA: 0s - loss: 0.1478 - accuracy: 0.9401 200/200 [==============================] - 0s 978us/step - loss: 0.1421 - accuracy: 0.9425 - val_loss: 0.1440 - val_accuracy: 0.9269
Epoch 6/20
1/200 [..............................] - ETA: 0s - loss: 0.1472 - accuracy: 0.9375 68/200 [=========>....................] - ETA: 0s - loss: 0.1387 - accuracy: 0.9481 141/200 [====================>.........] - ETA: 0s - loss: 0.1389 - accuracy: 0.9473 200/200 [==============================] - 0s 968us/step - loss: 0.1373 - accuracy: 0.9481 - val_loss: 0.1467 - val_accuracy: 0.9275
Epoch 7/20
1/200 [..............................] - ETA: 0s - loss: 0.1939 - accuracy: 0.9062 72/200 [=========>....................] - ETA: 0s - loss: 0.1466 - accuracy: 0.9405 139/200 [===================>..........] - ETA: 0s - loss: 0.1615 - accuracy: 0.9442 200/200 [==============================] - 0s 961us/step - loss: 0.2264 - accuracy: 0.9217 - val_loss: 0.2458 - val_accuracy: 0.9069
Epoch 8/20
1/200 [..............................] - ETA: 0s - loss: 0.3132 - accuracy: 0.8750 71/200 [=========>....................] - ETA: 0s - loss: 0.1977 - accuracy: 0.9291 140/200 [====================>.........] - ETA: 0s - loss: 0.1824 - accuracy: 0.9350 200/200 [==============================] - 0s 977us/step - loss: 0.1754 - accuracy: 0.9376 - val_loss: 0.1665 - val_accuracy: 0.9237
Epoch 9/20
1/200 [..............................] - ETA: 0s - loss: 0.3530 - accuracy: 0.8438 69/200 [=========>....................] - ETA: 0s - loss: 0.1742 - accuracy: 0.9330 142/200 [====================>.........] - ETA: 0s - loss: 0.1587 - accuracy: 0.9430 200/200 [==============================] - 0s 963us/step - loss: 0.1532 - accuracy: 0.9458 - val_loss: 0.1558 - val_accuracy: 0.9337
Epoch 10/20
1/200 [..............................] - ETA: 0s - loss: 0.0859 - accuracy: 0.9688 68/200 [=========>....................] - ETA: 0s - loss: 0.1445 - accuracy: 0.9563 137/200 [===================>..........] - ETA: 0s - loss: 0.1357 - accuracy: 0.9557 200/200 [==============================] - 0s 986us/step - loss: 0.1363 - accuracy: 0.9523 - val_loss: 0.1488 - val_accuracy: 0.9519
Epoch 11/20
1/200 [..............................] - ETA: 0s - loss: 0.1136 - accuracy: 0.9688 71/200 [=========>....................] - ETA: 0s - loss: 0.1323 - accuracy: 0.9582 138/200 [===================>..........] - ETA: 0s - loss: 0.1300 - accuracy: 0.9577 200/200 [==============================] - 0s 965us/step - loss: 0.1360 - accuracy: 0.9533 - val_loss: 0.1379 - val_accuracy: 0.9594
Epoch 12/20
1/200 [..............................] - ETA: 0s - loss: 0.1272 - accuracy: 0.9688 70/200 [=========>....................] - ETA: 0s - loss: 0.1273 - accuracy: 0.9558 141/200 [====================>.........] - ETA: 0s - loss: 0.1340 - accuracy: 0.9535 200/200 [==============================] - 0s 974us/step - loss: 0.1399 - accuracy: 0.9500 - val_loss: 0.1596 - val_accuracy: 0.9331
Epoch 13/20
1/200 [..............................] - ETA: 0s - loss: 0.3119 - accuracy: 0.8750 69/200 [=========>....................] - ETA: 0s - loss: 0.2623 - accuracy: 0.9094 137/200 [===================>..........] - ETA: 0s - loss: 0.2135 - accuracy: 0.9281 200/200 [==============================] - 0s 969us/step - loss: 0.1915 - accuracy: 0.9369 - val_loss: 0.1526 - val_accuracy: 0.9294
Epoch 14/20
1/200 [..............................] - ETA: 0s - loss: 0.1455 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1483 - accuracy: 0.9468 136/200 [===================>..........] - ETA: 0s - loss: 0.1708 - accuracy: 0.9403 200/200 [==============================] - 0s 967us/step - loss: 0.1559 - accuracy: 0.9458 - val_loss: 0.1417 - val_accuracy: 0.9575
Epoch 15/20
1/200 [..............................] - ETA: 0s - loss: 0.1071 - accuracy: 0.9375 72/200 [=========>....................] - ETA: 0s - loss: 0.1138 - accuracy: 0.9618 139/200 [===================>..........] - ETA: 0s - loss: 0.1219 - accuracy: 0.9611 200/200 [==============================] - 0s 954us/step - loss: 0.1286 - accuracy: 0.9580 - val_loss: 0.1347 - val_accuracy: 0.9581
Epoch 16/20
1/200 [..............................] - ETA: 0s - loss: 0.0978 - accuracy: 0.9688 71/200 [=========>....................] - ETA: 0s - loss: 0.1310 - accuracy: 0.9591 142/200 [====================>.........] - ETA: 0s - loss: 0.1285 - accuracy: 0.9571 200/200 [==============================] - 0s 964us/step - loss: 0.1322 - accuracy: 0.9559 - val_loss: 0.1416 - val_accuracy: 0.9581
Epoch 17/20
1/200 [..............................] - ETA: 0s - loss: 0.1309 - accuracy: 0.9688 73/200 [=========>....................] - ETA: 0s - loss: 0.1378 - accuracy: 0.9563 145/200 [====================>.........] - ETA: 0s - loss: 0.1389 - accuracy: 0.9534 200/200 [==============================] - 0s 941us/step - loss: 0.1344 - accuracy: 0.9551 - val_loss: 0.1389 - val_accuracy: 0.9594
Epoch 18/20
1/200 [..............................] - ETA: 0s - loss: 1.5093e-04 - accuracy: 1.0000 61/200 [========>.....................] - ETA: 0s - loss: 0.1352 - accuracy: 0.9544  128/200 [==================>...........] - ETA: 0s - loss: 0.1287 - accuracy: 0.9568 200/200 [==============================] - ETA: 0s - loss: 0.1270 - accuracy: 0.9575 200/200 [==============================] - 0s 1ms/step - loss: 0.1270 - accuracy: 0.9575 - val_loss: 0.1362 - val_accuracy: 0.9594
Epoch 19/20
1/200 [..............................] - ETA: 0s - loss: 0.1404 - accuracy: 0.9688 69/200 [=========>....................] - ETA: 0s - loss: 0.1217 - accuracy: 0.9579 139/200 [===================>..........] - ETA: 0s - loss: 0.1347 - accuracy: 0.9530 200/200 [==============================] - 0s 959us/step - loss: 0.1296 - accuracy: 0.9542 - val_loss: 0.1349 - val_accuracy: 0.9594
Epoch 20/20
1/200 [..............................] - ETA: 0s - loss: 0.3190 - accuracy: 0.8750 68/200 [=========>....................] - ETA: 0s - loss: 0.1388 - accuracy: 0.9550 133/200 [==================>...........] - ETA: 0s - loss: 0.1288 - accuracy: 0.9594 192/200 [===========================>..] - ETA: 0s - loss: 0.1266 - accuracy: 0.9585 200/200 [==============================] - 0s 1ms/step - loss: 0.1274 - accuracy: 0.9583 - val_loss: 0.1385 - val_accuracy: 0.9575
loss accuracy val_loss val_accuracy epoch
0 0.475650 0.815127 0.250621 0.893125 0
1 0.205338 0.919831 0.224716 0.895625 1
2 0.212970 0.923894 0.163060 0.928750 2
3 0.145409 0.939522 0.159278 0.927500 3
4 0.142135 0.942491 0.144023 0.926875 4
5 0.137297 0.948117 0.146737 0.927500 5
6 0.226381 0.921706 0.245775 0.906875 6
7 0.175432 0.937647 0.166548 0.923750 7
8 0.153183 0.945773 0.155808 0.933750 8
9 0.136298 0.952336 0.148819 0.951875 9
10 0.135954 0.953274 0.137862 0.959375 10
11 0.139950 0.949992 0.159633 0.933125 11
12 0.191454 0.936865 0.152623 0.929375 12
13 0.155906 0.945773 0.141746 0.957500 13
14 0.128649 0.957962 0.134679 0.958125 14
15 0.132179 0.955931 0.141568 0.958125 15
16 0.134409 0.955149 0.138940 0.959375 16
17 0.127008 0.957493 0.136193 0.959375 17
18 0.129558 0.954212 0.134924 0.959375 18
19 0.127444 0.958275 0.138473 0.957500 19

View File

@ -0,0 +1 @@
{}

76
sacred_results/1/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_03738d7fa8ddda89ca2fe431c513ef98.py"
]
]
},
"heartbeat": "2023-05-12T01:45:11.950417",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": 0,
"start_time": "2023-05-12T01:45:04.424851",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:45:11.949896"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 141586382,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_1e58b1af60742a0afc8f9272cd797079.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:00:48.492068",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:55.084941"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 542777191,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_9091c162cd6f6a5705b52b4eafa4d986.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:01:20.479109",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:01:26.200103"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 919803566,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_ec32466b205ec0b0b90ad1278e6f01ff.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:01:52.420346",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:01:58.218217"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 387787872,
"validation_split": 0.2
}

View File

@ -0,0 +1,62 @@
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
normalization (Normalizatio (None, 4) 9
n)
dense (Dense) (None, 64) 320
dense_1 (Dense) (None, 10) 650
dense_2 (Dense) (None, 10) 110
dense_3 (Dense) (None, 10) 110
dense_4 (Dense) (None, 5) 55
=================================================================
Total params: 1,254
Trainable params: 1,245
Non-trainable params: 9
_________________________________________________________________
Epoch 1/20
1/200 [..............................] - ETA: 1:42 - loss: 1.6469 - accuracy: 0.0625 35/200 [====>.........................] - ETA: 0s - loss: 1.0588 - accuracy: 0.6205  71/200 [=========>....................] - ETA: 0s - loss: 0.8379 - accuracy: 0.6937 109/200 [===============>..............] - ETA: 0s - loss: 0.6690 - accuracy: 0.7491 167/200 [========================>.....] - ETA: 0s - loss: 0.5336 - accuracy: 0.7990 200/200 [==============================] - 1s 2ms/step - loss: 0.4828 - accuracy: 0.8181 - val_loss: 0.2411 - val_accuracy: 0.9162
Epoch 2/20
1/200 [..............................] - ETA: 0s - loss: 0.2541 - accuracy: 0.9062 68/200 [=========>....................] - ETA: 0s - loss: 0.2156 - accuracy: 0.9154 135/200 [===================>..........] - ETA: 0s - loss: 0.1996 - accuracy: 0.9243 200/200 [==============================] - 0s 1ms/step - loss: 0.1881 - accuracy: 0.9284 - val_loss: 0.1701 - val_accuracy: 0.9275
Epoch 3/20
1/200 [..............................] - ETA: 0s - loss: 0.0257 - accuracy: 1.0000 62/200 [========>.....................] - ETA: 0s - loss: 0.1566 - accuracy: 0.9375 129/200 [==================>...........] - ETA: 0s - loss: 0.1545 - accuracy: 0.9382 193/200 [===========================>..] - ETA: 0s - loss: 0.1551 - accuracy: 0.9388 200/200 [==============================] - 0s 2ms/step - loss: 0.1541 - accuracy: 0.9392 - val_loss: 0.1709 - val_accuracy: 0.9275
Epoch 4/20
1/200 [..............................] - ETA: 0s - loss: 0.0209 - accuracy: 1.0000 68/200 [=========>....................] - ETA: 0s - loss: 0.2249 - accuracy: 0.9168 135/200 [===================>..........] - ETA: 0s - loss: 0.2761 - accuracy: 0.8988 200/200 [==============================] - 0s 998us/step - loss: 0.2380 - accuracy: 0.9139 - val_loss: 0.1782 - val_accuracy: 0.9275
Epoch 5/20
1/200 [..............................] - ETA: 0s - loss: 0.1677 - accuracy: 0.9375 70/200 [=========>....................] - ETA: 0s - loss: 0.1504 - accuracy: 0.9415 139/200 [===================>..........] - ETA: 0s - loss: 0.1517 - accuracy: 0.9402 200/200 [==============================] - 0s 1ms/step - loss: 0.1543 - accuracy: 0.9392 - val_loss: 0.1650 - val_accuracy: 0.9275
Epoch 6/20
1/200 [..............................] - ETA: 0s - loss: 0.1536 - accuracy: 0.9062 50/200 [======>.......................] - ETA: 0s - loss: 0.1602 - accuracy: 0.9362 106/200 [==============>...............] - ETA: 0s - loss: 0.1564 - accuracy: 0.9381 163/200 [=======================>......] - ETA: 0s - loss: 0.1503 - accuracy: 0.9408 200/200 [==============================] - 0s 1ms/step - loss: 0.1528 - accuracy: 0.9392 - val_loss: 0.1668 - val_accuracy: 0.9275
Epoch 7/20
1/200 [..............................] - ETA: 0s - loss: 0.2504 - accuracy: 0.8438 58/200 [=======>......................] - ETA: 0s - loss: 0.1488 - accuracy: 0.9397 116/200 [================>.............] - ETA: 0s - loss: 0.1608 - accuracy: 0.9353 182/200 [==========================>...] - ETA: 0s - loss: 0.1533 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1542 - accuracy: 0.9392 - val_loss: 0.1694 - val_accuracy: 0.9275
Epoch 8/20
1/200 [..............................] - ETA: 0s - loss: 0.1517 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1519 - accuracy: 0.9403 134/200 [===================>..........] - ETA: 0s - loss: 0.1455 - accuracy: 0.9438 200/200 [==============================] - 0s 985us/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1673 - val_accuracy: 0.9275
Epoch 9/20
1/200 [..............................] - ETA: 0s - loss: 0.1589 - accuracy: 0.9375 65/200 [========>.....................] - ETA: 0s - loss: 0.1525 - accuracy: 0.9409 129/200 [==================>...........] - ETA: 0s - loss: 0.1512 - accuracy: 0.9385 188/200 [===========================>..] - ETA: 0s - loss: 0.1517 - accuracy: 0.9397 200/200 [==============================] - 0s 1ms/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1719 - val_accuracy: 0.9275
Epoch 10/20
1/200 [..............................] - ETA: 0s - loss: 0.2366 - accuracy: 0.9062 59/200 [=======>......................] - ETA: 0s - loss: 0.1635 - accuracy: 0.9333 119/200 [================>.............] - ETA: 0s - loss: 0.1574 - accuracy: 0.9349 178/200 [=========================>....] - ETA: 0s - loss: 0.1538 - accuracy: 0.9389 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1679 - val_accuracy: 0.9275
Epoch 11/20
1/200 [..............................] - ETA: 0s - loss: 0.1362 - accuracy: 0.9375 67/200 [=========>....................] - ETA: 0s - loss: 0.1433 - accuracy: 0.9403 133/200 [==================>...........] - ETA: 0s - loss: 0.2378 - accuracy: 0.9159 182/200 [==========================>...] - ETA: 0s - loss: 0.2254 - accuracy: 0.9196 200/200 [==============================] - 0s 1ms/step - loss: 0.2225 - accuracy: 0.9200 - val_loss: 0.1731 - val_accuracy: 0.9262
Epoch 12/20
1/200 [..............................] - ETA: 0s - loss: 0.2198 - accuracy: 0.9062 49/200 [======>.......................] - ETA: 0s - loss: 0.1698 - accuracy: 0.9324 96/200 [=============>................] - ETA: 0s - loss: 0.2074 - accuracy: 0.9229 143/200 [====================>.........] - ETA: 0s - loss: 0.1951 - accuracy: 0.9268 188/200 [===========================>..] - ETA: 0s - loss: 0.1828 - accuracy: 0.9312 200/200 [==============================] - 0s 1ms/step - loss: 0.1807 - accuracy: 0.9314 - val_loss: 0.1702 - val_accuracy: 0.9275
Epoch 13/20
1/200 [..............................] - ETA: 0s - loss: 0.1454 - accuracy: 0.9688 61/200 [========>.....................] - ETA: 0s - loss: 0.1535 - accuracy: 0.9375 102/200 [==============>...............] - ETA: 0s - loss: 0.1504 - accuracy: 0.9390 139/200 [===================>..........] - ETA: 0s - loss: 0.1554 - accuracy: 0.9379 188/200 [===========================>..] - ETA: 0s - loss: 0.1534 - accuracy: 0.9393 200/200 [==============================] - 0s 1ms/step - loss: 0.1536 - accuracy: 0.9392 - val_loss: 0.1708 - val_accuracy: 0.9275
Epoch 14/20
1/200 [..............................] - ETA: 0s - loss: 0.1768 - accuracy: 0.9062 45/200 [=====>........................] - ETA: 0s - loss: 0.1386 - accuracy: 0.9458 89/200 [============>.................] - ETA: 0s - loss: 0.1537 - accuracy: 0.9393 127/200 [==================>...........] - ETA: 0s - loss: 0.1514 - accuracy: 0.9407 171/200 [========================>.....] - ETA: 0s - loss: 0.1543 - accuracy: 0.9388 200/200 [==============================] - 0s 1ms/step - loss: 0.1537 - accuracy: 0.9392 - val_loss: 0.1679 - val_accuracy: 0.9275
Epoch 15/20
1/200 [..............................] - ETA: 0s - loss: 0.0631 - accuracy: 0.9688 63/200 [========>.....................] - ETA: 0s - loss: 0.1696 - accuracy: 0.9301 122/200 [=================>............] - ETA: 0s - loss: 0.1608 - accuracy: 0.9357 177/200 [=========================>....] - ETA: 0s - loss: 0.1523 - accuracy: 0.9400 200/200 [==============================] - 0s 1ms/step - loss: 0.1534 - accuracy: 0.9392 - val_loss: 0.1683 - val_accuracy: 0.9275
Epoch 16/20
1/200 [..............................] - ETA: 0s - loss: 0.1745 - accuracy: 0.9062 66/200 [========>.....................] - ETA: 0s - loss: 0.1553 - accuracy: 0.9361 131/200 [==================>...........] - ETA: 0s - loss: 0.1586 - accuracy: 0.9361 195/200 [============================>.] - ETA: 0s - loss: 0.1536 - accuracy: 0.9388 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1715 - val_accuracy: 0.9275
Epoch 17/20
1/200 [..............................] - ETA: 0s - loss: 0.1205 - accuracy: 0.9688 68/200 [=========>....................] - ETA: 0s - loss: 0.1562 - accuracy: 0.9375 136/200 [===================>..........] - ETA: 0s - loss: 0.1589 - accuracy: 0.9350 199/200 [============================>.] - ETA: 0s - loss: 0.1527 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1716 - val_accuracy: 0.9275
Epoch 18/20
1/200 [..............................] - ETA: 0s - loss: 0.2231 - accuracy: 0.9062 67/200 [=========>....................] - ETA: 0s - loss: 0.1630 - accuracy: 0.9324 132/200 [==================>...........] - ETA: 0s - loss: 0.1583 - accuracy: 0.9354 199/200 [============================>.] - ETA: 0s - loss: 0.1524 - accuracy: 0.9394 200/200 [==============================] - 0s 1ms/step - loss: 0.1529 - accuracy: 0.9392 - val_loss: 0.1697 - val_accuracy: 0.9275
Epoch 19/20
1/200 [..............................] - ETA: 0s - loss: 0.2123 - accuracy: 0.9062 68/200 [=========>....................] - ETA: 0s - loss: 0.1571 - accuracy: 0.9416 134/200 [===================>..........] - ETA: 0s - loss: 0.1584 - accuracy: 0.9373 200/200 [==============================] - ETA: 0s - loss: 0.1523 - accuracy: 0.9392 200/200 [==============================] - 0s 996us/step - loss: 0.1523 - accuracy: 0.9392 - val_loss: 0.1678 - val_accuracy: 0.9275
Epoch 20/20
1/200 [..............................] - ETA: 0s - loss: 0.0634 - accuracy: 1.0000 63/200 [========>.....................] - ETA: 0s - loss: 0.1386 - accuracy: 0.9449 132/200 [==================>...........] - ETA: 0s - loss: 0.1481 - accuracy: 0.9427 200/200 [==============================] - 0s 994us/step - loss: 0.1531 - accuracy: 0.9392 - val_loss: 0.1666 - val_accuracy: 0.9275

View File

@ -0,0 +1,138 @@
{
"accuracy": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.8180965781211853,
0.9284263253211975,
0.9392092227935791,
0.9138928055763245,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9199874997138977,
0.9313955307006836,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791,
0.9392092227935791
]
},
"training.loss": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.4828028082847595,
0.188060462474823,
0.1540592610836029,
0.23801285028457642,
0.15432630479335785,
0.15283508598804474,
0.15420585870742798,
0.15343832969665527,
0.15339379012584686,
0.15310192108154297,
0.2225472629070282,
0.1807185709476471,
0.15355326235294342,
0.15366053581237793,
0.15342676639556885,
0.15310777723789215,
0.1530904769897461,
0.15290340781211853,
0.1523490697145462,
0.1531151980161667
]
}
}

View File

@ -0,0 +1,81 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_950f0f2f01029cca663d51346afb6be4.py"
]
]
},
"heartbeat": "2023-05-12T02:31:33.766889",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:31:23.145561",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:31:34.124580"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 729055136,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,138 @@
{
"accuracy": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.8296608924865723,
0.9309266805648804,
0.9328020215034485,
0.9182685017585754,
0.9393655061721802,
0.9388967156410217,
0.9393655061721802,
0.9409282803535461,
0.9401469230651855,
0.9278011918067932,
0.9131114482879639,
0.9263947606086731,
0.9490545392036438,
0.9520237445831299,
0.9509298205375671,
0.9556180834770203,
0.9368651509284973,
0.9610876441001892,
0.9592123627662659,
0.9592123627662659
]
},
"training.loss": {
"steps": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
],
"timestamps": [
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.256151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151",
"2023-05-12T02:31:30.257151"
],
"values": [
0.45444533228874207,
0.19581197202205658,
0.18958868086338043,
0.2101736068725586,
0.14783711731433868,
0.14647383987903595,
0.14401419460773468,
0.14188003540039062,
0.13803555071353912,
0.17904537916183472,
0.20916658639907837,
0.18071487545967102,
0.12553374469280243,
0.12510214745998383,
0.1285393238067627,
0.1186068207025528,
0.2004299759864807,
0.10671943426132202,
0.10109587013721466,
0.09748737514019012
]
}
}

View File

@ -0,0 +1,90 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_950f0f2f01029cca663d51346afb6be4.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 82, in my_main\n model.save('baltimore_model')\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py\", line 58, in quick_execute\n except TypeError as e:\n",
"tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__MergeV2Checkpoints_device_/job:localhost/replica:0/task:0/device:CPU:0}} allow_missing_files was set to false and baltimore_model\\variables\\variables_temp/part-00000-of-00001 did not exist.NOT_FOUND: baltimore_model\\variables\\variables_temp/part-00000-of-00001 not found [Op:MergeV2Checkpoints]\n"
],
"heartbeat": "2023-05-12T02:31:32.183758",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:31:23.190178",
"status": "FAILED",
"stop_time": "2023-05-12T02:31:32.850460"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 198446316,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1,81 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_dffd3acfe754d92b2302ad2ea90ff77a.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"config_updates": {},
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:39:18.207903",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:39:26.632263"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 790781882,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/2/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_9cc2793a97654cf2790c1fbe123bcd01.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 80, in my_main\n print(his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: string indices must be integers, not 'str'\n"
],
"heartbeat": "2023-05-12T01:54:53.653326",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:54:46.870553",
"status": "FAILED",
"stop_time": "2023-05-12T01:54:54.207945"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 266562668,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/3/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_579c32388fa25934923349500b535786.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 81, in my_main\n _run.log_scalar('training.loss', his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: string indices must be integers, not 'str'\n"
],
"heartbeat": "2023-05-12T01:55:15.444781",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:55:08.976651",
"status": "FAILED",
"stop_time": "2023-05-12T01:55:15.771016"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 955027700,
"validation_split": 0.2
}

View File

76
sacred_results/4/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_ad3e1f3bc92f1083dc55135614af4ad1.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:56:25.257367",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:56:31.839801"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 803545125,
"validation_split": 0.2
}

View File

76
sacred_results/5/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_0c451da111a523a7c71d60dc98471150.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:57:06.376366",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:57:12.134024"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 11952978,
"validation_split": 0.2
}

View File

76
sacred_results/6/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_5026556337a68b8efa6648528589a45e.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:58:49.666025",
"status": "COMPLETED",
"stop_time": "2023-05-12T01:58:55.896990"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 721231722,
"validation_split": 0.2
}

View File

View File

@ -0,0 +1 @@
{}

83
sacred_results/7/run.json Normal file
View File

@ -0,0 +1,83 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_823e254d1aa3fd8c744516bf9f9eba26.py"
]
]
},
"fail_trace": [
"Traceback (most recent call last):\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\wrapt\\wrappers.py\", line 578, in __call__\n return self._self_wrapper(self.__wrapped__, self._self_instance,\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"C:\\Users\\JaSzw\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sacred\\config\\captured_function.py\", line 42, in captured_function\n result = wrapped(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"E:\\Ium\\ium_487197\\ium_sacred.py\", line 80, in my_main\n print(his['loss'])\n ~~~^^^^^^^^\n",
"TypeError: tuple indices must be integers or slices, not str\n"
],
"heartbeat": "2023-05-12T01:59:35.227619",
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:59:29.000086",
"status": "FAILED",
"stop_time": "2023-05-12T01:59:35.726077"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 603474650,
"validation_split": 0.2
}

View File

76
sacred_results/8/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_fb513b69c34386383d17f6ab8aee64a0.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T01:59:57.385975",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:03.611204"
}

View File

@ -0,0 +1,263 @@
{
"args": {
"epochs": 20,
"lr": 0.01,
"py/object": "argparse.Namespace",
"validation_split": 0.2
},
"epochs": 20,
"lr": 0.01,
"parser": {
"_action_groups": [
{
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {
"py/id": 18
},
"_group_actions": [],
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "positional arguments"
},
{
"py/id": 8
}
],
"_actions": [
{
"choices": null,
"const": null,
"container": {
"_action_groups": [],
"_actions": {
"py/id": 5
},
"_defaults": {},
"_group_actions": [
{
"py/id": 6
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_has_negative_number_optionals": [],
"_mutually_exclusive_groups": [],
"_negative_number_matcher": {
"pattern": "^-\\d+$|^-\\d*\\.\\d+$",
"py/object": "re.Pattern"
},
"_option_string_actions": {
"--help": {
"py/id": 6
},
"-epochs": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 20,
"dest": "epochs",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-epochs"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.int"
}
},
"-h": {
"py/id": 6
},
"-lr": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.01,
"dest": "lr",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-lr"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
},
"-validation_split": {
"choices": null,
"const": null,
"container": {
"py/id": 8
},
"default": 0.2,
"dest": "validation_split",
"help": null,
"metavar": null,
"nargs": null,
"option_strings": [
"-validation_split"
],
"py/object": "argparse._StoreAction",
"required": false,
"type": {
"py/type": "builtins.float"
}
}
},
"_registries": {
"py/id": 2
},
"argument_default": null,
"conflict_handler": "error",
"description": null,
"prefix_chars": "-",
"py/object": "argparse._ArgumentGroup",
"title": "options"
},
"default": "==SUPPRESS==",
"dest": "help",
"help": "show this help message and exit",
"metavar": null,
"nargs": 0,
"option_strings": [
"-h",
"--help"
],
"py/object": "argparse._HelpAction",
"required": false,
"type": null
},
{
"py/id": 10
},
{
"py/id": 12
},
{
"py/id": 14
}
],
"_defaults": {
"py/id": 18
},
"_has_negative_number_optionals": {
"py/id": 20
},
"_mutually_exclusive_groups": {
"py/id": 17
},
"_negative_number_matcher": {
"py/id": 19
},
"_option_string_actions": {
"py/id": 9
},
"_optionals": {
"py/id": 8
},
"_positionals": {
"py/id": 23
},
"_registries": {
"action": {
"append": {
"py/type": "argparse._AppendAction"
},
"append_const": {
"py/type": "argparse._AppendConstAction"
},
"count": {
"py/type": "argparse._CountAction"
},
"extend": {
"py/type": "argparse._ExtendAction"
},
"help": {
"py/type": "argparse._HelpAction"
},
"json://null": {
"py/type": "argparse._StoreAction"
},
"parsers": {
"py/type": "argparse._SubParsersAction"
},
"store": {
"py/type": "argparse._StoreAction"
},
"store_const": {
"py/type": "argparse._StoreConstAction"
},
"store_false": {
"py/type": "argparse._StoreFalseAction"
},
"store_true": {
"py/type": "argparse._StoreTrueAction"
},
"version": {
"py/type": "argparse._VersionAction"
}
},
"type": {
"json://null": {
"py/function": "argparse.ArgumentParser.__init__.<locals>.identity"
}
}
},
"_subparsers": null,
"add_help": true,
"allow_abbrev": true,
"argument_default": null,
"conflict_handler": "error",
"description": "Train",
"epilog": null,
"exit_on_error": true,
"formatter_class": {
"py/type": "argparse.HelpFormatter"
},
"fromfile_prefix_chars": null,
"prefix_chars": "-",
"prog": "ium_sacred.py",
"py/object": "argparse.ArgumentParser",
"usage": null
},
"seed": 840512587,
"validation_split": 0.2
}

View File

76
sacred_results/9/run.json Normal file
View File

@ -0,0 +1,76 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "E:\\Ium\\ium_487197",
"dependencies": [
"keras==2.12.0",
"numpy==1.23.5",
"pandas==1.5.3",
"sacred==0.8.4",
"scikit-learn==1.2.2",
"tensorflow-intel==2.12.0"
],
"mainfile": "ium_sacred.py",
"name": "s487197-train",
"repositories": [],
"sources": [
[
"ium_sacred.py",
"_sources\\ium_sacred_e7097f8c1264234798bc616052caa420.py"
]
]
},
"heartbeat": null,
"host": {
"ENV": {},
"cpu": "AMD Ryzen 9 5900HX with Radeon Graphics",
"gpus": {
"driver_version": "512.74",
"gpus": [
{
"model": "NVIDIA GeForce RTX 3080 Laptop GPU",
"persistence_mode": false,
"total_memory": 8192
}
]
},
"hostname": "AcerNitro5WL",
"os": [
"Windows",
"Windows-10-10.0.22621-SP0"
],
"python_version": "3.11.2"
},
"meta": {
"command": "my_main",
"named_configs": [],
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--id": null,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2023-05-12T02:00:21.881935",
"status": "COMPLETED",
"stop_time": "2023-05-12T02:00:28.146176"
}

View File

@ -0,0 +1,110 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
return 0
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
ex.add_artifact('baltimore_model')
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in history.history:
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[1])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist.iterrows():
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist:
print(his)
_run.log_scalar('training.loss', his['loss'])
_run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his['loss'])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[1]['loss'])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,114 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
model.save('baltimore_model')
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run_commandline()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist:
print(his['loss'])
_run.log_scalar('training.loss', his['loss'])
_run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist)
for his in hist[1:]:
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,113 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.automain
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
model.save('baltimore_model')
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
#ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his)
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,113 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
for his in hist.iterrows():
_run.log_scalar('training.loss', his[1]['loss'])
_run.log_scalar('accuracy', his[1]['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()

View File

@ -0,0 +1,115 @@
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
import argparse
import shutil
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn import metrics
import math
ex = Experiment('s487197-train', save_git_info=False,interactive=True)
ex.observers.append(FileStorageObserver('sacred_results'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
#ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
def write_list(names):
with open('listfile.txt', 'w') as fp:
fp.write("\n".join(str(item) for item in names))
def get_x_y(data):
lb = LabelEncoder()
data = data.drop(["Location 1"], axis=1)
data = data.drop(
columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post",
"CrimeDate", "Inside/Outside"], axis=1)
for column_name in data.columns:
data[column_name] = lb.fit_transform(data[column_name])
x = data.drop('Weapon', axis=1)
y = data['Weapon']
return data, x, y
@ex.config
def my_config():
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('-epochs', type=int, default=20)
parser.add_argument('-lr', type=float, default=0.01)
parser.add_argument('-validation_split', type=float, default=0.2)
args = parser.parse_args()
epochs = args.epochs
lr = args.lr
validation_split = args.validation_split
@ex.capture
def prepare_message(epochs, lr, validation_split):
return "{0} {1} {2}!".format(epochs, lr, validation_split)
@ex.main
def my_main(epochs, lr, validation_split, _run):
train = pd.read_csv('baltimore_train.csv')
data_train, x_train, y_train = get_x_y(train)
normalizer = tf.keras.layers.Normalization(axis=1)
normalizer.adapt(np.array(x_train))
model = Sequential(normalizer)
model.add(Dense(64, activation="relu"))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
history = model.fit(
x_train,
y_train,
epochs=epochs,
validation_split=validation_split)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist)
for his in hist.iterrows():
print(his[0])
# _run.log_scalar('training.loss', his['loss'])
# _run.log_scalar('accuracy', his['accuracy'])
ex.add_artifact('baltimore_model')
"""
baltimore_data_test =pd.read_csv('baltimore_test.csv')
baltimore_data_test.columns = train.columns
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
scores = model.evaluate(x_test, y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
y_predicted = model.predict(x_test)
y_predicted = np.argmax(y_predicted, axis=1)
test_results = {}
test_results['Weapon'] = model.evaluate(
x_test,
y_test, verbose=0)
write_list(y_predicted)
print('Accuracy : ', scores[1] * 100)
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
data = {
'mse': metrics.mean_squared_error(y_test, y_predicted),
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
'accuracy': scores[1] * 100
}
_run.log_scalar('accuracy', data['accuracy'])
_run.log_scalar('rmse', data['rmse'])
_run.log_scalar('accuracy', data['accuracy'])
"""
ex.run()