Fix
This commit is contained in:
parent
63159ed8bf
commit
acd7ee81b2
@ -25,7 +25,7 @@ node {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: 's487197', url: 'https://git.wmi.amu.edu.pl/s487197/ium_487197']]])
|
||||
}
|
||||
stage('Dockerfile'){
|
||||
def testImage = docker.image('s487197/ium:39')
|
||||
def testImage = docker.image('s487197/ium:40')
|
||||
testImage.inside{
|
||||
copyArtifacts filter: 'baltimore_train.csv', projectName: 's487197-create-dataset'
|
||||
sh "python3 ium_sacred.py -epochs $EPOCHS -lr $LR -validation_split $VALIDATION_SPLIT"
|
||||
|
@ -38,27 +38,44 @@ def get_x_y(data):
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs = 20
|
||||
lr = 0.01
|
||||
validation_split = 0.2
|
||||
#parser = argparse.ArgumentParser(description='Train')
|
||||
parser = argparse.ArgumentParser(description='Train')
|
||||
|
||||
# parser.add_argument('-epochs', type=int, default=20)
|
||||
# parser.add_argument('-lr', type=float, default=0.01)
|
||||
#parser.add_argument('-validation_split', type=float, default=0.2)
|
||||
#args = parser.parse_args()
|
||||
# epochs = args.epochs
|
||||
# lr = args.lr
|
||||
# validation_split = args.validation_split
|
||||
parser.add_argument('-epochs', type=int, default=20)
|
||||
parser.add_argument('-lr', type=float, default=0.01)
|
||||
parser.add_argument('-validation_split', type=float, default=0.2)
|
||||
args = parser.parse_args()
|
||||
epochs = args.epochs
|
||||
lr = args.lr
|
||||
validation_split = args.validation_split
|
||||
|
||||
@ex.capture
|
||||
def prepare_message(epochs, lr, validation_split):
|
||||
return "{0} {1} {2}!".format(epochs, lr, validation_split)
|
||||
|
||||
@ex.main
|
||||
def predict(epochs, lr, validation_split):
|
||||
|
||||
print("ble")
|
||||
model = load_model('baltimore_model')
|
||||
|
||||
def my_main(epochs, lr, validation_split, _run):
|
||||
train = pd.read_csv('baltimore_train.csv')
|
||||
|
||||
data_train, x_train, y_train = get_x_y(train)
|
||||
normalizer = tf.keras.layers.Normalization(axis=1)
|
||||
normalizer.adapt(np.array(x_train))
|
||||
model = Sequential(normalizer)
|
||||
model.add(Dense(64, activation="relu"))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(5, activation="softmax"))
|
||||
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
||||
model.summary()
|
||||
|
||||
history = model.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=epochs,
|
||||
validation_split=validation_split)
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
|
||||
baltimore_data_test =pd.read_csv('baltimore_test.csv')
|
||||
baltimore_data_test.columns = train.columns
|
||||
baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test)
|
||||
@ -81,42 +98,11 @@ def predict(epochs, lr, validation_split):
|
||||
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
|
||||
'accuracy': scores[1] * 100
|
||||
}
|
||||
ex.log_scalar('accuracy', data['accuracy'])
|
||||
ex.log_scalar('rmse', data['rmse'])
|
||||
ex.log_scalar('accuracy', data['accuracy'])
|
||||
_run.log_scalar('accuracy', data['accuracy'])
|
||||
_run.log_scalar('rmse', data['rmse'])
|
||||
_run.log_scalar('accuracy', data['accuracy'])
|
||||
|
||||
ex.add_artifact('baltimore_model')
|
||||
|
||||
|
||||
|
||||
|
||||
@ex.capture
|
||||
def train_model(epochs, lr, validation_split):
|
||||
|
||||
|
||||
train = pd.read_csv('baltimore_train.csv')
|
||||
|
||||
data_train, x_train, y_train = get_x_y(train)
|
||||
normalizer = tf.keras.layers.Normalization(axis=1)
|
||||
normalizer.adapt(np.array(x_train))
|
||||
model = Sequential(normalizer)
|
||||
model.add(Dense(64, activation="relu"))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(10, activation='relu'))
|
||||
model.add(Dense(5, activation="softmax"))
|
||||
model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
||||
model.summary()
|
||||
|
||||
history = model.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=epochs,
|
||||
validation_split=validation_split)
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
model.save('baltimore_model')
|
||||
shutil.make_archive('baltimore', 'zip', 'baltimore_model')
|
||||
|
||||
ex.run()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user