5_jenkins_predict
This commit is contained in:
parent
0735fbc4ef
commit
ee9dacba25
@ -14,6 +14,7 @@ RUN pip3 install keras
|
||||
RUN pip3 install tensorflow
|
||||
RUN pip3 install scikit-learn
|
||||
RUN pip3 install argparse
|
||||
RUN pip3 install matplotlib
|
||||
|
||||
|
||||
WORKDIR /app
|
||||
|
36
Jenkinsfile_evaluation
Normal file
36
Jenkinsfile_evaluation
Normal file
@ -0,0 +1,36 @@
|
||||
node {
|
||||
stage('Preparation') {
|
||||
properties([
|
||||
parameters([
|
||||
string(
|
||||
defaultValue: '1',
|
||||
description: 'Build number',
|
||||
name: 'build'),
|
||||
gitParameter(
|
||||
branchFilter: 'origin/(.*)',
|
||||
defaultValue: 'master',
|
||||
name: 'BRANCH',
|
||||
type: 'PT_BRANCH'
|
||||
),
|
||||
])
|
||||
])
|
||||
}
|
||||
|
||||
stage('checkout: Check out from version control') {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: 's487197', url: 'https://git.wmi.amu.edu.pl/s487197/ium_487197']]])
|
||||
}
|
||||
stage('Dockerfile'){
|
||||
def testImage = docker.image('s487197/ium:37')
|
||||
testImage.inside{
|
||||
copyArtifacts filter: 'baltimore_train.csv', projectName: 's487197-create-dataset'
|
||||
copyArtifacts filter: 'baltimore_test.csv', projectName: 's487197-create-dataset'
|
||||
copyArtifacts filter: 'baltimore_model.h5', fingerprintArtifacts: true, projectName: "s487197-training/$BRANCH", selector: buildParameter(lastSuccessful())
|
||||
copyArtifacts filter: 'metrics.csv', projectName: "s487197-evaluation.eg/$BRANCH", optional: true
|
||||
sh "python3 ium_predict.py -build $BUILD"
|
||||
archiveArtifacts artifacts: 'metrics.csv, listfile.txt, metrics_img.png', onlyIfSuccessful: true
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -25,12 +25,14 @@ node {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: 's487197', url: 'https://git.wmi.amu.edu.pl/s487197/ium_487197']]])
|
||||
}
|
||||
stage('Dockerfile'){
|
||||
def testImage = docker.image('s487197/ium:36')
|
||||
def testImage = docker.image('s487197/ium:37')
|
||||
testImage.inside{
|
||||
copyArtifacts filter: 'baltimore_train.csv', projectName: 's487197-create-dataset'
|
||||
sh "python3 ium_train.py -epochs $EPOCHS -lr $LR -validation_split $VALIDATION_SPLIT"
|
||||
archiveArtifacts artifacts: 'baltimore_model.h5'
|
||||
|
||||
archiveArtifacts artifacts: 'baltimore.zip'
|
||||
stage('Buil'){
|
||||
build job: 's449312-evaluation.eg/master', parameters: [string(name: 'build', value: "${currentBuild.number}")], wait:false
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,10 +1,13 @@
|
||||
from keras.models import Sequential
|
||||
from keras.models import load_model
|
||||
import pandas as pd
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn import metrics
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
import os.path
|
||||
import argparse
|
||||
import matplotlib.pyplot as plt
|
||||
import shutil
|
||||
|
||||
def write_list(names):
|
||||
with open('listfile.txt', 'w') as fp:
|
||||
@ -26,7 +29,11 @@ def get_x_y(data):
|
||||
|
||||
|
||||
def predict():
|
||||
model = load_model('baltimore_model.h5')
|
||||
parser = argparse.ArgumentParser(description='Pred')
|
||||
parser.add_argument('-build', type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
shutil.unpack_archive('baltimore.zip', 'baltimore_model', 'zip')
|
||||
model = load_model('baltimore_model')
|
||||
|
||||
train = pd.read_csv('baltimore_train.csv')
|
||||
baltimore_data_test = pd.read_csv('baltimore_test.csv')
|
||||
@ -36,11 +43,46 @@ def predict():
|
||||
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
|
||||
|
||||
y_predicted = model.predict(x_test)
|
||||
y_predicted = np.argmax(y_predicted,axis=1)
|
||||
y_predicted = np.argmax(y_predicted, axis=1)
|
||||
test_results = {}
|
||||
test_results['Weapon'] = model.evaluate(
|
||||
x_test,
|
||||
y_test, verbose=0)
|
||||
write_list(y_predicted)
|
||||
print('Accuracy : ', scores[1] * 100)
|
||||
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
|
||||
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
|
||||
if os.path.exists("metrics.csv"):
|
||||
df = pd.read_csv('metrics.csv')
|
||||
data = {
|
||||
'build': [args.build],
|
||||
'mse': metrics.mean_squared_error(y_test, y_predicted),
|
||||
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
|
||||
'accuracy': scores[1] * 100
|
||||
}
|
||||
row = pd.DataFrame([data])
|
||||
if df['build'].isin([int(args.build)]).any():
|
||||
df[df['build'] == args.build] = row.iloc[0]
|
||||
else:
|
||||
df = pd.concat([df, row])
|
||||
df['build'] = df['build'].astype('int')
|
||||
df.to_csv('metrics.csv', index=False)
|
||||
else:
|
||||
data = {
|
||||
'build': [args.build],
|
||||
'mse': metrics.mean_squared_error(y_test, y_predicted),
|
||||
'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)),
|
||||
'accuracy': scores[1] * 100
|
||||
}
|
||||
df = pd.DataFrame(data)
|
||||
df['build'] = df['build'].astype('int')
|
||||
df.to_csv('metrics.csv', index=False)
|
||||
plt.plot(df['build'], df['mse'], label="mse")
|
||||
plt.plot(df['build'], df['rmse'], label="rmse")
|
||||
plt.plot(df['build'], df['accuracy'], label="accuracy")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
plt.savefig('metrics_img.png')
|
||||
|
||||
|
||||
predict()
|
@ -10,6 +10,7 @@ import tensorflow as tf
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import argparse
|
||||
import shutil
|
||||
|
||||
|
||||
def get_x_y(data):
|
||||
@ -57,7 +58,8 @@ def train_model():
|
||||
validation_split=args.validation_split)
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
model.save('baltimore_model.h5')
|
||||
model.save('baltimore_model')
|
||||
shutil.make_archive('baltimore', 'zip', 'baltimore_model')
|
||||
|
||||
|
||||
train_model()
|
||||
|
Loading…
Reference in New Issue
Block a user