from keras.models import load_model import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn import metrics import math import numpy as np import os.path import argparse import matplotlib.pyplot as plt import shutil def write_list(names): with open('listfile.txt', 'w') as fp: fp.write("\n".join(str(item) for item in names)) def get_x_y(data): lb = LabelEncoder() data = data.drop(["Location 1"], axis=1) data = data.drop(columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post", "CrimeDate", "Inside/Outside"], axis=1) for column_name in data.columns: data[column_name] = lb.fit_transform(data[column_name]) x = data.drop('Weapon', axis=1) y = data['Weapon'] return data, x, y def predict(): parser = argparse.ArgumentParser(description='Pred') parser.add_argument('-build', type=int, default=1) args = parser.parse_args() shutil.unpack_archive('baltimore.zip', 'baltimore_model', 'zip') model = load_model('baltimore_model') train = pd.read_csv('baltimore_train.csv') baltimore_data_test = pd.read_csv('baltimore_test.csv') baltimore_data_test.columns = train.columns baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test) scores = model.evaluate(x_test, y_test) print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) y_predicted = model.predict(x_test) y_predicted = np.argmax(y_predicted, axis=1) test_results = {} test_results['Weapon'] = model.evaluate( x_test, y_test, verbose=0) write_list(y_predicted) print('Accuracy : ', scores[1] * 100) print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted)) print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted))) if os.path.exists("metrics.csv"): df = pd.read_csv('metrics.csv') data = { 'build': [args.build], 'mse': metrics.mean_squared_error(y_test, y_predicted), 'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)), 'accuracy': scores[1] * 100 } row = pd.DataFrame([data]) if df['build'].isin([int(args.build)]).any(): df[df['build'] == args.build] = row.iloc[0] else: df = pd.concat([df, row]) df['build'] = df['build'].astype('int') df.to_csv('metrics.csv', index=False) else: data = { 'build': [args.build], 'mse': metrics.mean_squared_error(y_test, y_predicted), 'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)), 'accuracy': scores[1] * 100 } df = pd.DataFrame(data) df['build'] = df['build'].astype('int') df.to_csv('metrics.csv', index=False) plt.plot(df['build'], df['mse'], label="mse") plt.plot(df['build'], df['rmse'], label="rmse") plt.plot(df['build'], df['accuracy'], label="accuracy") plt.legend() plt.show() plt.savefig('metrics_img.png') predict()