from keras.models import Sequential, load_model from keras.layers import Dense from keras.optimizers import Adam import pandas as pd import tensorflow as tf import numpy as np from sklearn.preprocessing import LabelEncoder import argparse import shutil from sacred.observers import FileStorageObserver, MongoObserver from sacred import Experiment from sklearn import metrics import math ex = Experiment('s487197-train', save_git_info=False,interactive=True) ex.observers.append(FileStorageObserver('sacred_results')) #ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) #ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) def write_list(names): with open('listfile.txt', 'w') as fp: fp.write("\n".join(str(item) for item in names)) def get_x_y(data): lb = LabelEncoder() data = data.drop(["Location 1"], axis=1) data = data.drop( columns=["Longitude", "Latitude", "Location", "Total Incidents", "CrimeTime", "Neighborhood", "Post", "CrimeDate", "Inside/Outside"], axis=1) for column_name in data.columns: data[column_name] = lb.fit_transform(data[column_name]) x = data.drop('Weapon', axis=1) y = data['Weapon'] return data, x, y @ex.config def my_config(): parser = argparse.ArgumentParser(description='Train') parser.add_argument('-epochs', type=int, default=20) parser.add_argument('-lr', type=float, default=0.01) parser.add_argument('-validation_split', type=float, default=0.2) args = parser.parse_args() epochs = args.epochs lr = args.lr validation_split = args.validation_split @ex.capture def prepare_message(epochs, lr, validation_split): return "{0} {1} {2}!".format(epochs, lr, validation_split) @ex.main def my_main(epochs, lr, validation_split, _run): train = pd.read_csv('baltimore_train.csv') data_train, x_train, y_train = get_x_y(train) normalizer = tf.keras.layers.Normalization(axis=1) normalizer.adapt(np.array(x_train)) model = Sequential(normalizer) model.add(Dense(64, activation="relu")) model.add(Dense(10, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(5, activation="softmax")) model.compile(Adam(learning_rate=lr), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() history = model.fit( x_train, y_train, epochs=epochs, validation_split=validation_split) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch print(hist) for his in hist: print(his) _run.log_scalar('training.loss', his['loss']) _run.log_scalar('accuracy', his['accuracy']) ex.add_artifact('baltimore_model') """ baltimore_data_test =pd.read_csv('baltimore_test.csv') baltimore_data_test.columns = train.columns baltimore_data_test, x_test, y_test = get_x_y(baltimore_data_test) scores = model.evaluate(x_test, y_test) print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) y_predicted = model.predict(x_test) y_predicted = np.argmax(y_predicted, axis=1) test_results = {} test_results['Weapon'] = model.evaluate( x_test, y_test, verbose=0) write_list(y_predicted) print('Accuracy : ', scores[1] * 100) print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted)) print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted))) data = { 'mse': metrics.mean_squared_error(y_test, y_predicted), 'rmse': math.sqrt(metrics.mean_squared_error(y_test, y_predicted)), 'accuracy': scores[1] * 100 } _run.log_scalar('accuracy', data['accuracy']) _run.log_scalar('rmse', data['rmse']) _run.log_scalar('accuracy', data['accuracy']) """ ex.run()