136 lines
3.3 KiB
Plaintext
136 lines
3.3 KiB
Plaintext
|
.. -*- rest -*-
|
||
|
|
||
|
==================================================
|
||
|
API changes in the new masked array implementation
|
||
|
==================================================
|
||
|
|
||
|
Masked arrays are subclasses of ndarray
|
||
|
---------------------------------------
|
||
|
|
||
|
Contrary to the original implementation, masked arrays are now regular
|
||
|
ndarrays::
|
||
|
|
||
|
>>> x = masked_array([1,2,3],mask=[0,0,1])
|
||
|
>>> print isinstance(x, numpy.ndarray)
|
||
|
True
|
||
|
|
||
|
|
||
|
``_data`` returns a view of the masked array
|
||
|
--------------------------------------------
|
||
|
|
||
|
Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the
|
||
|
``_data`` part will return a regular ndarray or any of its subclass, depending
|
||
|
on the initial data::
|
||
|
|
||
|
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
||
|
>>> print x._data
|
||
|
[[1 2]
|
||
|
[3 4]]
|
||
|
>>> print type(x._data)
|
||
|
<class 'numpy.matrixlib.defmatrix.matrix'>
|
||
|
|
||
|
|
||
|
In practice, ``_data`` is implemented as a property, not as an attribute.
|
||
|
Therefore, you cannot access it directly, and some simple tests such as the
|
||
|
following one will fail::
|
||
|
|
||
|
>>>x._data is x._data
|
||
|
False
|
||
|
|
||
|
|
||
|
``filled(x)`` can return a subclass of ndarray
|
||
|
----------------------------------------------
|
||
|
The function ``filled(a)`` returns an array of the same type as ``a._data``::
|
||
|
|
||
|
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
||
|
>>> y = filled(x)
|
||
|
>>> print type(y)
|
||
|
<class 'numpy.matrixlib.defmatrix.matrix'>
|
||
|
>>> print y
|
||
|
matrix([[ 1, 2],
|
||
|
[ 3, 999999]])
|
||
|
|
||
|
|
||
|
``put``, ``putmask`` behave like their ndarray counterparts
|
||
|
-----------------------------------------------------------
|
||
|
|
||
|
Previously, ``putmask`` was used like this::
|
||
|
|
||
|
mask = [False,True,True]
|
||
|
x = array([1,4,7],mask=mask)
|
||
|
putmask(x,mask,[3])
|
||
|
|
||
|
which translated to::
|
||
|
|
||
|
x[~mask] = [3]
|
||
|
|
||
|
(Note that a ``True``-value in a mask suppresses a value.)
|
||
|
|
||
|
In other words, the mask had the same length as ``x``, whereas
|
||
|
``values`` had ``sum(~mask)`` elements.
|
||
|
|
||
|
Now, the behaviour is similar to that of ``ndarray.putmask``, where
|
||
|
the mask and the values are both the same length as ``x``, i.e.
|
||
|
|
||
|
::
|
||
|
|
||
|
putmask(x,mask,[3,0,0])
|
||
|
|
||
|
|
||
|
``fill_value`` is a property
|
||
|
----------------------------
|
||
|
|
||
|
``fill_value`` is no longer a method, but a property::
|
||
|
|
||
|
>>> print x.fill_value
|
||
|
999999
|
||
|
|
||
|
``cumsum`` and ``cumprod`` ignore missing values
|
||
|
------------------------------------------------
|
||
|
|
||
|
Missing values are assumed to be the identity element, i.e. 0 for
|
||
|
``cumsum`` and 1 for ``cumprod``::
|
||
|
|
||
|
>>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False])
|
||
|
>>> print x
|
||
|
[1 -- 3 4]
|
||
|
>>> print x.cumsum()
|
||
|
[1 -- 4 8]
|
||
|
>> print x.cumprod()
|
||
|
[1 -- 3 12]
|
||
|
|
||
|
``bool(x)`` raises a ValueError
|
||
|
-------------------------------
|
||
|
|
||
|
Masked arrays now behave like regular ``ndarrays``, in that they cannot be
|
||
|
converted to booleans:
|
||
|
|
||
|
::
|
||
|
|
||
|
>>> x = N.ma.array([1,2,3])
|
||
|
>>> bool(x)
|
||
|
Traceback (most recent call last):
|
||
|
File "<stdin>", line 1, in <module>
|
||
|
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
|
||
|
|
||
|
|
||
|
==================================
|
||
|
New features (non exhaustive list)
|
||
|
==================================
|
||
|
|
||
|
``mr_``
|
||
|
-------
|
||
|
|
||
|
``mr_`` mimics the behavior of ``r_`` for masked arrays::
|
||
|
|
||
|
>>> np.ma.mr_[3,4,5]
|
||
|
masked_array(data = [3 4 5],
|
||
|
mask = False,
|
||
|
fill_value=999999)
|
||
|
|
||
|
|
||
|
``anom``
|
||
|
--------
|
||
|
|
||
|
The ``anom`` method returns the deviations from the average (anomalies).
|