Lab 5
This commit is contained in:
parent
dbd04404f1
commit
4a30b40aa2
@ -8,14 +8,8 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
|
|
||||||
"<div class=\"alert alert-block alert-info\">\n",
|
|
||||||
"<h1> Inżynieria uczenia maszynowego </h1>\n",
|
"<h1> Inżynieria uczenia maszynowego </h1>\n",
|
||||||
"<h2> 5. <i>Biblioteki Deep Learning</i> [laboratoria]</h2> \n",
|
"<h2> 5. <i>Biblioteki Deep Learning</i> [laboratoria]</h2> "
|
||||||
"<h3> Tomasz Ziętkiewicz (2022)</h3>\n",
|
|
||||||
"</div>\n",
|
|
||||||
"\n",
|
|
||||||
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -73,7 +67,7 @@
|
|||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"## 1. Tensorflow\n",
|
"## 1. Tensorflow\n",
|
||||||
" - www.tensorflow.org\n",
|
" - [https://tensorflow.org](https://tensorflow.org)\n",
|
||||||
" - Open source\n",
|
" - Open source\n",
|
||||||
" - Rozwijana przez google\n",
|
" - Rozwijana przez google\n",
|
||||||
" - Bogaty \"ekosystem\"\n",
|
" - Bogaty \"ekosystem\"\n",
|
||||||
@ -128,7 +122,7 @@
|
|||||||
" - Dynamiczny graf obliczeń\n",
|
" - Dynamiczny graf obliczeń\n",
|
||||||
" - Możliwość osadzenia na urządzeniach Android i iOS ([Torch mobile](https://pytorch.org/mobile/home/))\n",
|
" - Możliwość osadzenia na urządzeniach Android i iOS ([Torch mobile](https://pytorch.org/mobile/home/))\n",
|
||||||
" - Serwowanie modeli przez REST dzięki [TorchServe](https://pytorch.org/serve/)\n",
|
" - Serwowanie modeli przez REST dzięki [TorchServe](https://pytorch.org/serve/)\n",
|
||||||
" - Przykład klasyfikacji IRIS w PyTorch: https://www.kaggle.com/aaditkapoor1201/iris-classification-pytorch"
|
" - Przykład klasyfikacji Iris w PyTorch: https://www.kaggle.com/aaditkapoor1201/iris-classification-pytorch"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -162,7 +156,7 @@
|
|||||||
" - zmergowana do repozytorium PyTorch\n",
|
" - zmergowana do repozytorium PyTorch\n",
|
||||||
" - Open source\n",
|
" - Open source\n",
|
||||||
" - Głównie zastosowania produkcyjne, w tym modele embedded (Caffe2go)\n",
|
" - Głównie zastosowania produkcyjne, w tym modele embedded (Caffe2go)\n",
|
||||||
" - PyTorch: łatwość ekspoerymentowania, research. Caffe2: wydajność, urządzenia mobilne\n",
|
" - PyTorch: łatwość eksperymentowania, research. Caffe2: wydajność, urządzenia mobilne\n",
|
||||||
" - ONNX jako format wymiany między Caffe2 i PyTorch"
|
" - ONNX jako format wymiany między Caffe2 i PyTorch"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -182,7 +176,7 @@
|
|||||||
" - Napisana w Javie i C++\n",
|
" - Napisana w Javie i C++\n",
|
||||||
" - Interfejsy: Java, Scala, Clojure, Kotlin\n",
|
" - Interfejsy: Java, Scala, Clojure, Kotlin\n",
|
||||||
" - Możliość importu modeli Keras\n",
|
" - Możliość importu modeli Keras\n",
|
||||||
" - Przykład klasyfikacji IRIS: https://deeplearning4j.konduit.ai/android/linear-classifier\n"
|
" - Przykład klasyfikacji Iris: https://deeplearning4j.konduit.ai/android/linear-classifier\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -215,7 +209,7 @@
|
|||||||
" - Open source (licencja MIT)\n",
|
" - Open source (licencja MIT)\n",
|
||||||
" - Napisana w C#, C++\n",
|
" - Napisana w C#, C++\n",
|
||||||
" - API: .NET, Python (bindingi poprzez [NimbusML](https://github.com/microsoft/NimbusML))\n",
|
" - API: .NET, Python (bindingi poprzez [NimbusML](https://github.com/microsoft/NimbusML))\n",
|
||||||
" - Przykłady klasyfikacji IRIS:\n",
|
" - Przykłady klasyfikacji Iris:\n",
|
||||||
" - https://docs.microsoft.com/pl-pl/dotnet/machine-learning/tutorials/iris-clustering\n",
|
" - https://docs.microsoft.com/pl-pl/dotnet/machine-learning/tutorials/iris-clustering\n",
|
||||||
" - https://github.com/dotnet/machinelearning-samples/tree/main/samples/csharp/getting-started/MulticlassClassification_Iris\n",
|
" - https://github.com/dotnet/machinelearning-samples/tree/main/samples/csharp/getting-started/MulticlassClassification_Iris\n",
|
||||||
" - Więcej przykładów: https://github.com/dotnet/machinelearning-samples\n",
|
" - Więcej przykładów: https://github.com/dotnet/machinelearning-samples\n",
|
||||||
@ -233,7 +227,7 @@
|
|||||||
"## 8. MXNet\n",
|
"## 8. MXNet\n",
|
||||||
" - https://mxnet.apache.org/\n",
|
" - https://mxnet.apache.org/\n",
|
||||||
" - Open source (Apache 2.0)\n",
|
" - Open source (Apache 2.0)\n",
|
||||||
" - Rozwijana przez [Apache Software Foundation](https://www.apache.org/)\n",
|
" - Był rozwijany przez [Apache Software Foundation](https://www.apache.org/)\n",
|
||||||
" - Backend napisany w C++\n",
|
" - Backend napisany w C++\n",
|
||||||
" - Iterfejsy: Python (główny) i dodatkowo for Scala, Julia, Clojure, Java, C++, R i Perl\n",
|
" - Iterfejsy: Python (główny) i dodatkowo for Scala, Julia, Clojure, Java, C++, R i Perl\n",
|
||||||
" - Możliwość osadzenia na urządzeniach mobilnych dzięki [amalgamacji](https://mxnet.apache.org/versions/1.8.0/api/faq/smart_device)"
|
" - Możliwość osadzenia na urządzeniach mobilnych dzięki [amalgamacji](https://mxnet.apache.org/versions/1.8.0/api/faq/smart_device)"
|
||||||
@ -256,9 +250,9 @@
|
|||||||
"|PyTorch |Facebook |BSD |C++,Python |C,Python, Java | |\n",
|
"|PyTorch |Facebook |BSD |C++,Python |C,Python, Java | |\n",
|
||||||
"|Caffe |[BAIR](https://bair.berkeley.edu/)|BSD|C++|Python,Matlab| |\n",
|
"|Caffe |[BAIR](https://bair.berkeley.edu/)|BSD|C++|Python,Matlab| |\n",
|
||||||
"|Caffe2 |Facebook |BSD |C++ |C++,Python |Od 3 lat (2018) część PyTorch|\n",
|
"|Caffe2 |Facebook |BSD |C++ |C++,Python |Od 3 lat (2018) część PyTorch|\n",
|
||||||
"|CNTK |Microsoft |MIT |C++ |Python, C++, C# |od 01.2019 nierozwijana|\n",
|
"|CNTK |Microsoft |MIT |C++ |Python, C++, C# |nierozwijany od 01.2019|\n",
|
||||||
"|ML.NET |Microsoft |MIT |C++, C## |.NET, Python || \n",
|
"|ML.NET |Microsoft |MIT |C++, C## |.NET, Python || \n",
|
||||||
"|MXNet |Apache Foundation|Apache 2.0|C++, Python|Python, Scala, Julia, Clojure, Java, C++, R i Perl||"
|
"|MXNet |Apache Foundation|Apache 2.0|C++, Python|Python, Scala, Julia, Clojure, Java, C++, R i Perl|nierozwijany od 05.2022|"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -294,7 +288,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## Zadanie [22 pkt.]\n",
|
"## Zadanie [22 pkt.]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Termin: 2023-05-12\n",
|
"Termin: 24 kwietnia 2024\n",
|
||||||
"\n",
|
"\n",
|
||||||
"1. Wybierz jeden z frameworków ML (jeden z powyższych, ale może być też inny) i zaimplementuj w nim prostą sieć neuronową rozwiązującą wybrany problem (np regresji lub klasyfikacji) na wybranym na poprzednich zajęciach zbiorze. Możesz wzorować się (lub nawet skopiować) na jednym z tutotoriali do danego frameworka.\n",
|
"1. Wybierz jeden z frameworków ML (jeden z powyższych, ale może być też inny) i zaimplementuj w nim prostą sieć neuronową rozwiązującą wybrany problem (np regresji lub klasyfikacji) na wybranym na poprzednich zajęciach zbiorze. Możesz wzorować się (lub nawet skopiować) na jednym z tutotoriali do danego frameworka.\n",
|
||||||
" - wczytaj dane trenujące z pliku [2 pkt.]\n",
|
" - wczytaj dane trenujące z pliku [2 pkt.]\n",
|
||||||
|
Loading…
Reference in New Issue
Block a user