move code from jupyter to python classes

This commit is contained in:
464962 2024-05-27 21:50:25 +02:00
parent c71bbc071d
commit 513f09e06b
4 changed files with 169 additions and 31 deletions

View File

@ -1,8 +1,76 @@
class DialoguePolicy:
from collections import defaultdict
import json
from copy import deepcopy
from convlab.policy.policy import Policy
def policy(self, state):
system_act = None
name = "James"
if state == "what name":
system_act = f"inform(name={name})"
return system_act
db_path = './hotels_data.json'
class DialoguePolicy(Policy):
def __init__(self):
Policy.__init__(self)
self.db = self.load_database(db_path)
def load_database(self, db_path):
with open(db_path, 'r', encoding='utf-8') as f:
return json.load(f)
def query(self, domain, constraints):
if domain != 'hotel':
return []
results = []
for entry in self.db:
match = all(entry.get(key) == value for key, value in constraints)
if match:
results.append(entry)
return results
def predict(self, state):
self.results = []
system_action = defaultdict(list)
user_action = defaultdict(list)
for intent, domain, slot, value in state['user_action']:
user_action[(domain.lower(), intent.lower())].append((slot.lower(), value))
for user_act in user_action:
self.update_system_action(user_act, user_action, state, system_action)
if any(True for slots in user_action.values() for (slot, _) in slots if
slot in ['book stay', 'book day', 'book people']):
if self.results:
system_action = {('Booking', 'Book'): [["Ref", self.results[0].get('Ref', 'N/A')]]}
system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for
slot, value in slots]
state['system_action'] = system_acts
return system_acts
def update_system_action(self, user_act, user_action, state, system_action):
domain, intent = user_act
constraints = [(slot, value) for slot, value in state['belief_state'][domain]['info'].items() if value != '']
# print(f"Constraints: {constraints}")
self.results = deepcopy(self.query(domain.lower(), constraints))
# print(f"Query results: {self.results}")
if intent == 'request':
if len(self.results) == 0:
system_action[(domain, 'NoOffer')] = []
else:
for slot in user_action[user_act]:
if slot[0] in self.results[0]:
system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(slot[0], 'unknown')])
elif intent == 'inform':
if len(self.results) == 0:
system_action[(domain, 'NoOffer')] = []
else:
system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])
choice = self.results[0]
if domain in ["hotel"]:
system_action[(domain, 'Recommend')].append(['Name', choice['name']])
for slot in state['belief_state'][domain]['info']:
if choice.get(slot):
state['belief_state'][domain]['info'][slot] = choice[slot]

View File

@ -1,7 +1,77 @@
class DialogueStateTracker:
import json
from convlab.dst.dst import DST
def dst(self, user_act):
state = None
if user_act == "request(firstname)":
state = "what name"
return state
def default_state():
return {
'belief_state': {
'hotel': {
'info': {
'name': '',
'area': '',
'parking': '',
'price range': '',
'stars': '',
'internet': '',
'type': ''
},
'booking': {
'book stay': '',
'book day': '',
'book people': ''
}
}
},
'request_state': {},
'history': [],
'user_action': [],
'system_action': [],
'terminated': False,
'booked': []
}
class DialogueStateTracker(DST):
def __init__(self):
DST.__init__(self)
self.state = default_state()
with open('./hotels_data.json') as f:
self.value_dict = json.load(f)
def update(self, user_act=None):
for intent, domain, slot, value in user_act:
domain = domain.lower()
intent = intent.lower()
slot = slot.lower()
if domain not in self.state['belief_state']:
continue
if intent == 'inform':
if slot == 'none' or slot == '' or value == 'dontcare':
continue
domain_dic = self.state['belief_state'][domain]['info']
if slot in domain_dic:
nvalue = self.normalize_value(self.value_dict, domain, slot, value)
self.state['belief_state'][domain]['info'][slot] = nvalue
elif intent == 'request':
if domain not in self.state['request_state']:
self.state['request_state'][domain] = {}
if slot not in self.state['request_state'][domain]:
self.state['request_state'][domain][slot] = 0
return self.state
def normalize_value(self, value_dict, domain, slot, value):
normalized_value = value.lower().strip()
if domain in value_dict and slot in value_dict[domain]:
possible_values = value_dict[domain][slot]
if isinstance(possible_values, dict) and normalized_value in possible_values:
return possible_values[normalized_value]
return value
def init_session(self):
self.state = default_state()

30
Main.py
View File

@ -1,24 +1,20 @@
from NaturalLanguageAnalyzer import NaturalLanguageAnalyzer
from DialogueStateTracker import DialogueStateTracker
from DialoguePolicy import DialoguePolicy
from NaturalLanguageGeneration import NaturalLanguageGeneration
from DialogueStateTracker import DialogueStateTracker
from convlab.dialog_agent import PipelineAgent
from convlab.nlg.template.multiwoz import TemplateNLG
if __name__ == "__main__":
text = "chciałbym zarezerwować pokój z balkonem 1 stycznia w Warszawie"
nla = NaturalLanguageAnalyzer()
user_act = nla.process(text)
print(user_act)
text = "chciałbym zarezerwować drogi hotel z parkingiem 1 stycznia w Warszawie w centrum"
nlu = NaturalLanguageAnalyzer()
dst = DialogueStateTracker()
policy = DialoguePolicy()
nlg = TemplateNLG(is_user=False)
# dst = DialogueStateTracker()
# state = dst.dst(user_act)
# print(state)
#
# dp = DialoguePolicy()
# system_act = dp.policy(state)
# print(system_act)
#
# nlg = NaturalLanguageGeneration()
# response = nlg.nlg(system_act)
# print(response)
agent = PipelineAgent(nlu=nlu, dst=dst, policy=policy, nlg=nlg, name='sys')
response = agent.response(text)
print(response)

View File

@ -14,7 +14,7 @@ def translate_text(text, target_language='en'):
class NaturalLanguageAnalyzer:
def process(self, text):
def predict(self, text, context=None):
# Inicjalizacja modelu NLU
model_name = "ConvLab/t5-small-nlu-multiwoz21"
nlu_model = T5NLU(speaker='user', context_window_size=0, model_name_or_path=model_name)
@ -26,3 +26,7 @@ class NaturalLanguageAnalyzer:
nlu_output = nlu_model.predict(translated_input)
return nlu_output
def init_session(self):
# Inicjalizacja sesji (jeśli konieczne)
pass