From edcfb81f612bbcd93c451b63457bf069726e62c8 Mon Sep 17 00:00:00 2001 From: PawelDopierala Date: Tue, 26 Nov 2024 20:48:17 +0100 Subject: [PATCH] Update --- create_servers.py | 4 ++-- execute.py | 38 ++++++++++++++++++++++++++++++++++++++ main.py | 30 ++++++++++++++++++++++-------- 3 files changed, 62 insertions(+), 10 deletions(-) create mode 100644 execute.py diff --git a/create_servers.py b/create_servers.py index 7cdf899..78f4e09 100644 --- a/create_servers.py +++ b/create_servers.py @@ -3,7 +3,7 @@ from hcloud.images.domain import Image from hcloud.server_types.domain import ServerType from hcloud.locations.domain import Location -servers_no = 2 +servers_no = 16 TOKEN = "V5gkzZ13coCVPKWkQbmbyGPyxDdsTjiubwVtx35jH7mix8A32JqM5CWJtqoLjtFK" @@ -57,4 +57,4 @@ with open('my_list.txt', 'w') as file: for item in ip_list: file.write(item + '\n') -print("Finished") \ No newline at end of file +print("Finished") diff --git a/execute.py b/execute.py new file mode 100644 index 0000000..57f1eec --- /dev/null +++ b/execute.py @@ -0,0 +1,38 @@ +import asyncio +import httpx + +with open('my_list.txt', 'r') as file: + ip_list = [line.strip() for line in file] + +async def send_request(client, server_ip, rangee, sigma): + data = { + "a": rangee[0], + "b": rangee[1], + "sigma": sigma + } + response = await client.post(f"http://{server_ip}:8000/compute", json=data, timeout=300.0) + return response.text + +# Główna funkcja do wysyłania zapytań do wszystkich serwerów równocześnie +async def main(a_start, b_end, sigma): + num_chunks = len(ip_list) + chunk_size = (b_end - a_start + 1) // num_chunks + ranges = [(a_start + i * chunk_size, min(a_start + (i + 1) * chunk_size - 1, b_end)) + for i in range(num_chunks)] + async with httpx.AsyncClient() as client: + tasks = [send_request(client, server, rangee, sigma) for server, rangee in zip(ip_list, ranges)] + # tasks2 = [send_request(client, server, rangee, sigma) for server, rangee in zip(ip_list, ranges[16:32])] + # tasks.extend(tasks2) + results = await asyncio.gather(*tasks) + final_result = 0 + for idx, result in enumerate(results): + final_result += int(result.strip('"')) + final_result = final_result % 999999937 + print(final_result) + +# Uruchomienie głównej funkcji +if __name__ == "__main__": + sigma = 510104288 + a = 1 + b = 7000 + asyncio.run(main(a, b, sigma)) diff --git a/main.py b/main.py index d4f65f7..7f84d8e 100644 --- a/main.py +++ b/main.py @@ -1,3 +1,5 @@ +from concurrent.futures import ThreadPoolExecutor + from fastapi import FastAPI from pydantic import BaseModel import subprocess @@ -11,19 +13,31 @@ class ComputeInput(BaseModel): b: str sigma: str - -@app.post("/compute") -async def compute(data: ComputeInput): - a = data.a - b = data.b - sigma = data.sigma - +def run_compute(a,b,sigma): result = subprocess.run( - ['./computeC', a, b, sigma], + ['./computeC', str(a), str(b), sigma], capture_output=True, text=True ) return result.stdout.strip() +@app.post("/compute") +async def compute(data: ComputeInput): + a_start = int(data.a) + b_end = int(data.b) + sigma = data.sigma + + num_chunks = 8 + + chunk_size = (b_end - a_start + 1) // num_chunks + ranges = [(a_start + i * chunk_size, min(a_start + (i + 1) * chunk_size - 1, b_end)) + for i in range(num_chunks)] + + with ThreadPoolExecutor() as executor: + futures = [executor.submit(run_compute, a, b, sigma) for a, b in ranges] + results = [f.result() for f in futures] + + return sum(results) + if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)