3765 lines
184 KiB
Plaintext
3765 lines
184 KiB
Plaintext
|
{
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 0,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"provenance": []
|
|||
|
},
|
|||
|
"kernelspec": {
|
|||
|
"name": "python3",
|
|||
|
"display_name": "Python 3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"name": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Import bibliotek"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "fbReA72OlQ_Q"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"import sklearn\n",
|
|||
|
"from sklearn.preprocessing import OneHotEncoder\n",
|
|||
|
"from sklearn.model_selection import train_test_split\n",
|
|||
|
"from google.colab import files\n",
|
|||
|
"import pandas as pd"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "lIs7iUiKlVvA"
|
|||
|
},
|
|||
|
"execution_count": 1,
|
|||
|
"outputs": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Pobranie danych"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "PFLEmQ76IauU"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "plw8exY_D-2b",
|
|||
|
"outputId": "6cd21e52-fbfc-432e-e7f3-019e2ad2416c"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (1.5.16)\n",
|
|||
|
"Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle) (1.16.0)\n",
|
|||
|
"Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from kaggle) (2024.2.2)\n",
|
|||
|
"Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.8.2)\n",
|
|||
|
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.31.0)\n",
|
|||
|
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from kaggle) (4.66.2)\n",
|
|||
|
"Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle) (8.0.4)\n",
|
|||
|
"Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.0.7)\n",
|
|||
|
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle) (6.1.0)\n",
|
|||
|
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle) (0.5.1)\n",
|
|||
|
"Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle) (1.3)\n",
|
|||
|
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.3.2)\n",
|
|||
|
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.6)\n",
|
|||
|
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n",
|
|||
|
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n",
|
|||
|
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)\n",
|
|||
|
"Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas) (1.25.2)\n",
|
|||
|
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"#Zainstalujmy potrzebne biblioteki\n",
|
|||
|
"!pip install --user kaggle #API Kaggle, do pobrania zbioru\n",
|
|||
|
"!pip install --user pandas"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"files.upload()\n",
|
|||
|
"! mkdir ~/.kaggle\n",
|
|||
|
"! cp kaggle.json ~/.kaggle/\n",
|
|||
|
"! chmod 600 ~/.kaggle/kaggle.json"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 88
|
|||
|
},
|
|||
|
"id": "vKwe6YuNFV0K",
|
|||
|
"outputId": "23d34751-9086-4508-bf1b-162d8b770e28"
|
|||
|
},
|
|||
|
"execution_count": 3,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "display_data",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"<IPython.core.display.HTML object>"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <input type=\"file\" id=\"files-fe6c8433-f772-471c-b5fe-47a4b4599e3c\" name=\"files[]\" multiple disabled\n",
|
|||
|
" style=\"border:none\" />\n",
|
|||
|
" <output id=\"result-fe6c8433-f772-471c-b5fe-47a4b4599e3c\">\n",
|
|||
|
" Upload widget is only available when the cell has been executed in the\n",
|
|||
|
" current browser session. Please rerun this cell to enable.\n",
|
|||
|
" </output>\n",
|
|||
|
" <script>// Copyright 2017 Google LLC\n",
|
|||
|
"//\n",
|
|||
|
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
|||
|
"// you may not use this file except in compliance with the License.\n",
|
|||
|
"// You may obtain a copy of the License at\n",
|
|||
|
"//\n",
|
|||
|
"// http://www.apache.org/licenses/LICENSE-2.0\n",
|
|||
|
"//\n",
|
|||
|
"// Unless required by applicable law or agreed to in writing, software\n",
|
|||
|
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
|||
|
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
|||
|
"// See the License for the specific language governing permissions and\n",
|
|||
|
"// limitations under the License.\n",
|
|||
|
"\n",
|
|||
|
"/**\n",
|
|||
|
" * @fileoverview Helpers for google.colab Python module.\n",
|
|||
|
" */\n",
|
|||
|
"(function(scope) {\n",
|
|||
|
"function span(text, styleAttributes = {}) {\n",
|
|||
|
" const element = document.createElement('span');\n",
|
|||
|
" element.textContent = text;\n",
|
|||
|
" for (const key of Object.keys(styleAttributes)) {\n",
|
|||
|
" element.style[key] = styleAttributes[key];\n",
|
|||
|
" }\n",
|
|||
|
" return element;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"// Max number of bytes which will be uploaded at a time.\n",
|
|||
|
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
|
|||
|
"\n",
|
|||
|
"function _uploadFiles(inputId, outputId) {\n",
|
|||
|
" const steps = uploadFilesStep(inputId, outputId);\n",
|
|||
|
" const outputElement = document.getElementById(outputId);\n",
|
|||
|
" // Cache steps on the outputElement to make it available for the next call\n",
|
|||
|
" // to uploadFilesContinue from Python.\n",
|
|||
|
" outputElement.steps = steps;\n",
|
|||
|
"\n",
|
|||
|
" return _uploadFilesContinue(outputId);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"// This is roughly an async generator (not supported in the browser yet),\n",
|
|||
|
"// where there are multiple asynchronous steps and the Python side is going\n",
|
|||
|
"// to poll for completion of each step.\n",
|
|||
|
"// This uses a Promise to block the python side on completion of each step,\n",
|
|||
|
"// then passes the result of the previous step as the input to the next step.\n",
|
|||
|
"function _uploadFilesContinue(outputId) {\n",
|
|||
|
" const outputElement = document.getElementById(outputId);\n",
|
|||
|
" const steps = outputElement.steps;\n",
|
|||
|
"\n",
|
|||
|
" const next = steps.next(outputElement.lastPromiseValue);\n",
|
|||
|
" return Promise.resolve(next.value.promise).then((value) => {\n",
|
|||
|
" // Cache the last promise value to make it available to the next\n",
|
|||
|
" // step of the generator.\n",
|
|||
|
" outputElement.lastPromiseValue = value;\n",
|
|||
|
" return next.value.response;\n",
|
|||
|
" });\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/**\n",
|
|||
|
" * Generator function which is called between each async step of the upload\n",
|
|||
|
" * process.\n",
|
|||
|
" * @param {string} inputId Element ID of the input file picker element.\n",
|
|||
|
" * @param {string} outputId Element ID of the output display.\n",
|
|||
|
" * @return {!Iterable<!Object>} Iterable of next steps.\n",
|
|||
|
" */\n",
|
|||
|
"function* uploadFilesStep(inputId, outputId) {\n",
|
|||
|
" const inputElement = document.getElementById(inputId);\n",
|
|||
|
" inputElement.disabled = false;\n",
|
|||
|
"\n",
|
|||
|
" const outputElement = document.getElementById(outputId);\n",
|
|||
|
" outputElement.innerHTML = '';\n",
|
|||
|
"\n",
|
|||
|
" const pickedPromise = new Promise((resolve) => {\n",
|
|||
|
" inputElement.addEventListener('change', (e) => {\n",
|
|||
|
" resolve(e.target.files);\n",
|
|||
|
" });\n",
|
|||
|
" });\n",
|
|||
|
"\n",
|
|||
|
" const cancel = document.createElement('button');\n",
|
|||
|
" inputElement.parentElement.appendChild(cancel);\n",
|
|||
|
" cancel.textContent = 'Cancel upload';\n",
|
|||
|
" const cancelPromise = new Promise((resolve) => {\n",
|
|||
|
" cancel.onclick = () => {\n",
|
|||
|
" resolve(null);\n",
|
|||
|
" };\n",
|
|||
|
" });\n",
|
|||
|
"\n",
|
|||
|
" // Wait for the user to pick the files.\n",
|
|||
|
" const files = yield {\n",
|
|||
|
" promise: Promise.race([pickedPromise, cancelPromise]),\n",
|
|||
|
" response: {\n",
|
|||
|
" action: 'starting',\n",
|
|||
|
" }\n",
|
|||
|
" };\n",
|
|||
|
"\n",
|
|||
|
" cancel.remove();\n",
|
|||
|
"\n",
|
|||
|
" // Disable the input element since further picks are not allowed.\n",
|
|||
|
" inputElement.disabled = true;\n",
|
|||
|
"\n",
|
|||
|
" if (!files) {\n",
|
|||
|
" return {\n",
|
|||
|
" response: {\n",
|
|||
|
" action: 'complete',\n",
|
|||
|
" }\n",
|
|||
|
" };\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" for (const file of files) {\n",
|
|||
|
" const li = document.createElement('li');\n",
|
|||
|
" li.append(span(file.name, {fontWeight: 'bold'}));\n",
|
|||
|
" li.append(span(\n",
|
|||
|
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
|
|||
|
" `last modified: ${\n",
|
|||
|
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
|
|||
|
" 'n/a'} - `));\n",
|
|||
|
" const percent = span('0% done');\n",
|
|||
|
" li.appendChild(percent);\n",
|
|||
|
"\n",
|
|||
|
" outputElement.appendChild(li);\n",
|
|||
|
"\n",
|
|||
|
" const fileDataPromise = new Promise((resolve) => {\n",
|
|||
|
" const reader = new FileReader();\n",
|
|||
|
" reader.onload = (e) => {\n",
|
|||
|
" resolve(e.target.result);\n",
|
|||
|
" };\n",
|
|||
|
" reader.readAsArrayBuffer(file);\n",
|
|||
|
" });\n",
|
|||
|
" // Wait for the data to be ready.\n",
|
|||
|
" let fileData = yield {\n",
|
|||
|
" promise: fileDataPromise,\n",
|
|||
|
" response: {\n",
|
|||
|
" action: 'continue',\n",
|
|||
|
" }\n",
|
|||
|
" };\n",
|
|||
|
"\n",
|
|||
|
" // Use a chunked sending to avoid message size limits. See b/62115660.\n",
|
|||
|
" let position = 0;\n",
|
|||
|
" do {\n",
|
|||
|
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
|
|||
|
" const chunk = new Uint8Array(fileData, position, length);\n",
|
|||
|
" position += length;\n",
|
|||
|
"\n",
|
|||
|
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
|
|||
|
" yield {\n",
|
|||
|
" response: {\n",
|
|||
|
" action: 'append',\n",
|
|||
|
" file: file.name,\n",
|
|||
|
" data: base64,\n",
|
|||
|
" },\n",
|
|||
|
" };\n",
|
|||
|
"\n",
|
|||
|
" let percentDone = fileData.byteLength === 0 ?\n",
|
|||
|
" 100 :\n",
|
|||
|
" Math.round((position / fileData.byteLength) * 100);\n",
|
|||
|
" percent.textContent = `${percentDone}% done`;\n",
|
|||
|
"\n",
|
|||
|
" } while (position < fileData.byteLength);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" // All done.\n",
|
|||
|
" yield {\n",
|
|||
|
" response: {\n",
|
|||
|
" action: 'complete',\n",
|
|||
|
" }\n",
|
|||
|
" };\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"scope.google = scope.google || {};\n",
|
|||
|
"scope.google.colab = scope.google.colab || {};\n",
|
|||
|
"scope.google.colab._files = {\n",
|
|||
|
" _uploadFiles,\n",
|
|||
|
" _uploadFilesContinue,\n",
|
|||
|
"};\n",
|
|||
|
"})(self);\n",
|
|||
|
"</script> "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {}
|
|||
|
},
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"Saving kaggle.json to kaggle (4).json\n",
|
|||
|
"mkdir: cannot create directory ‘/root/.kaggle’: File exists\n"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"!kaggle datasets download -d muhammadbinimran/housing-price-prediction-data"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "V0tjpXGnHprW",
|
|||
|
"outputId": "8ab72502-fd6f-4e12-966e-4bd135225b92"
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"housing-price-prediction-data.zip: Skipping, found more recently modified local copy (use --force to force download)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"!unzip -o housing-price-prediction-data.zip"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "KFdbSDSGH5hK",
|
|||
|
"outputId": "fe5639b9-9ff8-4c0c-c9f3-d0fd86f09c39"
|
|||
|
},
|
|||
|
"execution_count": 5,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"Archive: housing-price-prediction-data.zip\n",
|
|||
|
" inflating: housing_price_dataset.csv \n"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Wczytanie zbioru"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "tH7ufJQWI2bT"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"!pip install --user pandas"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "D_XnqsLfI1ki",
|
|||
|
"outputId": "c9983630-5453-42cf-e5a4-e32b47c5b8ee"
|
|||
|
},
|
|||
|
"execution_count": 6,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n",
|
|||
|
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n",
|
|||
|
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)\n",
|
|||
|
"Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas) (1.25.2)\n",
|
|||
|
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"housing_price_dataset = pd.read_csv('housing_price_dataset.csv')\n",
|
|||
|
"housing_price_dataset"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 424
|
|||
|
},
|
|||
|
"id": "TKu6XCn2I5KF",
|
|||
|
"outputId": "006ac90f-d56e-4bc9-8495-af9450376102"
|
|||
|
},
|
|||
|
"execution_count": 7,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms Neighborhood YearBuilt Price\n",
|
|||
|
"0 2126 4 1 Rural 1969 215355.283618\n",
|
|||
|
"1 2459 3 2 Rural 1980 195014.221626\n",
|
|||
|
"2 1860 2 1 Suburb 1970 306891.012076\n",
|
|||
|
"3 2294 2 1 Urban 1996 206786.787153\n",
|
|||
|
"4 2130 5 2 Suburb 2001 272436.239065\n",
|
|||
|
"... ... ... ... ... ... ...\n",
|
|||
|
"49995 1282 5 3 Rural 1975 100080.865895\n",
|
|||
|
"49996 2854 2 2 Suburb 1988 374507.656727\n",
|
|||
|
"49997 2979 5 3 Suburb 1962 384110.555590\n",
|
|||
|
"49998 2596 5 2 Rural 1984 380512.685957\n",
|
|||
|
"49999 1572 5 3 Rural 2011 221618.583218\n",
|
|||
|
"\n",
|
|||
|
"[50000 rows x 6 columns]"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-edad94fe-b9cc-4eb7-8eb9-112894937818\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>Neighborhood</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>2126</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>Rural</td>\n",
|
|||
|
" <td>1969</td>\n",
|
|||
|
" <td>215355.283618</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>2459</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>Rural</td>\n",
|
|||
|
" <td>1980</td>\n",
|
|||
|
" <td>195014.221626</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>1860</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>Suburb</td>\n",
|
|||
|
" <td>1970</td>\n",
|
|||
|
" <td>306891.012076</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>2294</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>Urban</td>\n",
|
|||
|
" <td>1996</td>\n",
|
|||
|
" <td>206786.787153</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>2130</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>Suburb</td>\n",
|
|||
|
" <td>2001</td>\n",
|
|||
|
" <td>272436.239065</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49995</th>\n",
|
|||
|
" <td>1282</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>Rural</td>\n",
|
|||
|
" <td>1975</td>\n",
|
|||
|
" <td>100080.865895</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49996</th>\n",
|
|||
|
" <td>2854</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>Suburb</td>\n",
|
|||
|
" <td>1988</td>\n",
|
|||
|
" <td>374507.656727</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49997</th>\n",
|
|||
|
" <td>2979</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>Suburb</td>\n",
|
|||
|
" <td>1962</td>\n",
|
|||
|
" <td>384110.555590</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49998</th>\n",
|
|||
|
" <td>2596</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>Rural</td>\n",
|
|||
|
" <td>1984</td>\n",
|
|||
|
" <td>380512.685957</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49999</th>\n",
|
|||
|
" <td>1572</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>Rural</td>\n",
|
|||
|
" <td>2011</td>\n",
|
|||
|
" <td>221618.583218</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>50000 rows × 6 columns</p>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-edad94fe-b9cc-4eb7-8eb9-112894937818')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-edad94fe-b9cc-4eb7-8eb9-112894937818 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-edad94fe-b9cc-4eb7-8eb9-112894937818');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-e281a0ab-be36-4cd9-99c8-0c33c244ff16\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e281a0ab-be36-4cd9-99c8-0c33c244ff16')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-e281a0ab-be36-4cd9-99c8-0c33c244ff16 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"variable_name": "housing_price_dataset",
|
|||
|
"summary": "{\n \"name\": \"housing_price_dataset\",\n \"rows\": 50000,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 575,\n \"min\": 1000,\n \"max\": 2999,\n \"num_unique_values\": 2000,\n \"samples\": [\n 2578,\n 2250,\n 1585\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2,\n \"max\": 5,\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 5,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 1,\n 2,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Rural\",\n \"Suburb\",\n \"Urban\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20,\n \"min\": 1950,\n \"max\": 2021,\n \"num_unique_values\": 72,\n \"samples\": [\n 2001,\n 1967,\n 1962\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 76141.84296604691,\n \"min\": -36588.16539749279,\n \"max\": 492195.2599720151,\n \"num_unique_values\": 50000,\n \"samples\": [\n 170835.03571295898,\n 126913.4699981214,\n 246611.88309182983\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 7
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Podział zbioru"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "2PIqECUhIvcd"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_train_test, hp_dev = sklearn.model_selection.train_test_split(housing_price_dataset, test_size=0.1)\n",
|
|||
|
"hp_train, hp_test = sklearn.model_selection.train_test_split(hp_train_test, test_size=1000)"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "Rb5GTCQGIUzE"
|
|||
|
},
|
|||
|
"execution_count": 8,
|
|||
|
"outputs": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Normalizacja danych"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "v9X6AQHYjLA2"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"housing_price_dataset[\"Neighborhood\"].unique()"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "iU0adUbpjdSS",
|
|||
|
"outputId": "d8bb2852-9017-40b6-bf1b-1619c869c8de"
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array(['Rural', 'Suburb', 'Urban'], dtype=object)"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 9
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_train = pd.get_dummies(hp_train, columns=['Neighborhood'])\n",
|
|||
|
"hp_dev = pd.get_dummies(hp_dev, columns=['Neighborhood'])\n",
|
|||
|
"hp_test = pd.get_dummies(hp_test, columns=['Neighborhood'])"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "oLibzeZ5kivR"
|
|||
|
},
|
|||
|
"execution_count": 10,
|
|||
|
"outputs": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_train"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 424
|
|||
|
},
|
|||
|
"id": "1Pjm-8iKsMH-",
|
|||
|
"outputId": "6bdf19b2-ac29-4f7e-a479-5217df193eba"
|
|||
|
},
|
|||
|
"execution_count": 11,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"7616 2027 3 3 2013 237960.032012 \n",
|
|||
|
"47787 1292 5 1 2021 86121.435887 \n",
|
|||
|
"35285 1964 2 3 1970 208054.904277 \n",
|
|||
|
"8718 2581 4 2 1990 230475.439055 \n",
|
|||
|
"36680 2020 5 2 2011 278860.337033 \n",
|
|||
|
"... ... ... ... ... ... \n",
|
|||
|
"22830 1245 5 1 1975 167679.728402 \n",
|
|||
|
"43699 2065 4 2 2021 257521.317661 \n",
|
|||
|
"21160 1967 3 1 1951 262332.423882 \n",
|
|||
|
"30915 2867 2 3 1990 311233.596471 \n",
|
|||
|
"19117 1631 3 1 1967 200594.974438 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"7616 0 0 1 \n",
|
|||
|
"47787 0 1 0 \n",
|
|||
|
"35285 0 0 1 \n",
|
|||
|
"8718 1 0 0 \n",
|
|||
|
"36680 0 0 1 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"22830 1 0 0 \n",
|
|||
|
"43699 0 1 0 \n",
|
|||
|
"21160 0 1 0 \n",
|
|||
|
"30915 0 0 1 \n",
|
|||
|
"19117 1 0 0 \n",
|
|||
|
"\n",
|
|||
|
"[44000 rows x 8 columns]"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-601e59b6-c587-4e32-955e-084019ad4fa2\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7616</th>\n",
|
|||
|
" <td>2027</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>2013</td>\n",
|
|||
|
" <td>237960.032012</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>47787</th>\n",
|
|||
|
" <td>1292</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>2021</td>\n",
|
|||
|
" <td>86121.435887</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>35285</th>\n",
|
|||
|
" <td>1964</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1970</td>\n",
|
|||
|
" <td>208054.904277</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>8718</th>\n",
|
|||
|
" <td>2581</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1990</td>\n",
|
|||
|
" <td>230475.439055</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>36680</th>\n",
|
|||
|
" <td>2020</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2011</td>\n",
|
|||
|
" <td>278860.337033</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>22830</th>\n",
|
|||
|
" <td>1245</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1975</td>\n",
|
|||
|
" <td>167679.728402</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>43699</th>\n",
|
|||
|
" <td>2065</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2021</td>\n",
|
|||
|
" <td>257521.317661</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>21160</th>\n",
|
|||
|
" <td>1967</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1951</td>\n",
|
|||
|
" <td>262332.423882</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>30915</th>\n",
|
|||
|
" <td>2867</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1990</td>\n",
|
|||
|
" <td>311233.596471</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>19117</th>\n",
|
|||
|
" <td>1631</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1967</td>\n",
|
|||
|
" <td>200594.974438</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>44000 rows × 8 columns</p>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-601e59b6-c587-4e32-955e-084019ad4fa2')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-601e59b6-c587-4e32-955e-084019ad4fa2 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-601e59b6-c587-4e32-955e-084019ad4fa2');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-e5dfecf4-d4d2-4c5d-8938-cf2f49863177\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e5dfecf4-d4d2-4c5d-8938-cf2f49863177')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-e5dfecf4-d4d2-4c5d-8938-cf2f49863177 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"variable_name": "hp_train",
|
|||
|
"summary": "{\n \"name\": \"hp_train\",\n \"rows\": 44000,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 575,\n \"min\": 1000,\n \"max\": 2999,\n \"num_unique_values\": 2000,\n \"samples\": [\n 2015,\n 2776,\n 1529\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2,\n \"max\": 5,\n \"num_unique_values\": 4,\n \"samples\": [\n 5,\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 1,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20,\n \"min\": 1950,\n \"max\": 2021,\n \"num_unique_values\": 72,\n \"samples\": [\n 2011,\n 1950,\n 1966\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 76107.65251634463,\n \"min\": -36588.16539749279,\n \"max\": 492195.2599720151,\n \"num_unique_values\": 44000,\n \"samples\": [\n 127869.24389754632,\n 331602.267141956,\n 149546.59653504143\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 11
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_dev"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 424
|
|||
|
},
|
|||
|
"id": "ab4RCTHUt9Vt",
|
|||
|
"outputId": "6ccc34ad-8a8c-4677-c521-c6d821776e11"
|
|||
|
},
|
|||
|
"execution_count": 12,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"46301 2845 4 3 1954 354875.353057 \n",
|
|||
|
"10023 2362 4 3 2010 292371.871755 \n",
|
|||
|
"37044 1058 3 2 2007 155277.040755 \n",
|
|||
|
"17462 2891 5 1 2005 239120.147027 \n",
|
|||
|
"13804 2244 5 2 1966 254005.280471 \n",
|
|||
|
"... ... ... ... ... ... \n",
|
|||
|
"35925 1684 4 1 1950 212224.505489 \n",
|
|||
|
"21799 1021 5 3 1995 139005.940982 \n",
|
|||
|
"4318 2741 4 2 1962 339074.548520 \n",
|
|||
|
"31492 2053 3 3 2014 239382.414641 \n",
|
|||
|
"26727 2963 3 1 2004 321585.613385 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"46301 0 0 1 \n",
|
|||
|
"10023 1 0 0 \n",
|
|||
|
"37044 0 1 0 \n",
|
|||
|
"17462 1 0 0 \n",
|
|||
|
"13804 1 0 0 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"35925 1 0 0 \n",
|
|||
|
"21799 1 0 0 \n",
|
|||
|
"4318 1 0 0 \n",
|
|||
|
"31492 0 0 1 \n",
|
|||
|
"26727 0 1 0 \n",
|
|||
|
"\n",
|
|||
|
"[5000 rows x 8 columns]"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-e8450f4b-c328-4c04-9a1f-3e67a17788ad\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>46301</th>\n",
|
|||
|
" <td>2845</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1954</td>\n",
|
|||
|
" <td>354875.353057</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>10023</th>\n",
|
|||
|
" <td>2362</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>2010</td>\n",
|
|||
|
" <td>292371.871755</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>37044</th>\n",
|
|||
|
" <td>1058</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2007</td>\n",
|
|||
|
" <td>155277.040755</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>17462</th>\n",
|
|||
|
" <td>2891</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>2005</td>\n",
|
|||
|
" <td>239120.147027</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>13804</th>\n",
|
|||
|
" <td>2244</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1966</td>\n",
|
|||
|
" <td>254005.280471</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>35925</th>\n",
|
|||
|
" <td>1684</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1950</td>\n",
|
|||
|
" <td>212224.505489</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>21799</th>\n",
|
|||
|
" <td>1021</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1995</td>\n",
|
|||
|
" <td>139005.940982</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4318</th>\n",
|
|||
|
" <td>2741</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1962</td>\n",
|
|||
|
" <td>339074.548520</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>31492</th>\n",
|
|||
|
" <td>2053</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>2014</td>\n",
|
|||
|
" <td>239382.414641</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>26727</th>\n",
|
|||
|
" <td>2963</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>2004</td>\n",
|
|||
|
" <td>321585.613385</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5000 rows × 8 columns</p>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e8450f4b-c328-4c04-9a1f-3e67a17788ad')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-e8450f4b-c328-4c04-9a1f-3e67a17788ad button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-e8450f4b-c328-4c04-9a1f-3e67a17788ad');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-93811741-2640-42ae-b1db-3d88d736a520\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-93811741-2640-42ae-b1db-3d88d736a520')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-93811741-2640-42ae-b1db-3d88d736a520 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"variable_name": "hp_dev",
|
|||
|
"summary": "{\n \"name\": \"hp_dev\",\n \"rows\": 5000,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 576,\n \"min\": 1000,\n \"max\": 2999,\n \"num_unique_values\": 1829,\n \"samples\": [\n 2667,\n 2963,\n 2213\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2,\n \"max\": 5,\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 2,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20,\n \"min\": 1950,\n \"max\": 2021,\n \"num_unique_values\": 72,\n \"samples\": [\n 1966,\n 1986,\n 2021\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 76778.00565792067,\n \"min\": -18159.685676249966,\n \"max\": 467492.8278233021,\n \"num_unique_values\": 5000,\n \"samples\": [\n 186133.49424564492,\n 217865.6155495013,\n 194238.86404489263\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 12
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_test"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 424
|
|||
|
},
|
|||
|
"id": "zjOYohYCt-md",
|
|||
|
"outputId": "723811f9-e6b4-4878-f949-0cfdced5ca3d"
|
|||
|
},
|
|||
|
"execution_count": 13,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"49356 1174 5 3 1996 143866.306649 \n",
|
|||
|
"18656 1776 3 1 1964 125553.381347 \n",
|
|||
|
"27368 2524 2 2 2010 327261.077660 \n",
|
|||
|
"27243 1633 2 1 1953 241231.423110 \n",
|
|||
|
"24653 2811 4 2 1982 315724.479288 \n",
|
|||
|
"... ... ... ... ... ... \n",
|
|||
|
"20015 2106 2 2 2014 216406.701646 \n",
|
|||
|
"40921 1704 3 3 1986 153770.810572 \n",
|
|||
|
"30027 1150 5 3 1973 138938.157678 \n",
|
|||
|
"16008 2822 2 2 1982 296193.916437 \n",
|
|||
|
"23919 1348 2 2 1983 133497.577808 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"49356 0 1 0 \n",
|
|||
|
"18656 0 0 1 \n",
|
|||
|
"27368 1 0 0 \n",
|
|||
|
"27243 1 0 0 \n",
|
|||
|
"24653 1 0 0 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"20015 0 0 1 \n",
|
|||
|
"40921 1 0 0 \n",
|
|||
|
"30027 0 0 1 \n",
|
|||
|
"16008 0 1 0 \n",
|
|||
|
"23919 1 0 0 \n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 8 columns]"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-ac9089e6-45f0-4578-97d1-ff8843413135\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>49356</th>\n",
|
|||
|
" <td>1174</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1996</td>\n",
|
|||
|
" <td>143866.306649</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>18656</th>\n",
|
|||
|
" <td>1776</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1964</td>\n",
|
|||
|
" <td>125553.381347</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>27368</th>\n",
|
|||
|
" <td>2524</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2010</td>\n",
|
|||
|
" <td>327261.077660</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>27243</th>\n",
|
|||
|
" <td>1633</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>1953</td>\n",
|
|||
|
" <td>241231.423110</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>24653</th>\n",
|
|||
|
" <td>2811</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1982</td>\n",
|
|||
|
" <td>315724.479288</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>20015</th>\n",
|
|||
|
" <td>2106</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2014</td>\n",
|
|||
|
" <td>216406.701646</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>40921</th>\n",
|
|||
|
" <td>1704</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1986</td>\n",
|
|||
|
" <td>153770.810572</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>30027</th>\n",
|
|||
|
" <td>1150</td>\n",
|
|||
|
" <td>5</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>1973</td>\n",
|
|||
|
" <td>138938.157678</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>16008</th>\n",
|
|||
|
" <td>2822</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1982</td>\n",
|
|||
|
" <td>296193.916437</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>23919</th>\n",
|
|||
|
" <td>1348</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>1983</td>\n",
|
|||
|
" <td>133497.577808</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 8 columns</p>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ac9089e6-45f0-4578-97d1-ff8843413135')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-ac9089e6-45f0-4578-97d1-ff8843413135 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-ac9089e6-45f0-4578-97d1-ff8843413135');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-cf201a7d-0bc3-4ad7-982e-4424ba424285\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-cf201a7d-0bc3-4ad7-982e-4424ba424285')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-cf201a7d-0bc3-4ad7-982e-4424ba424285 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"variable_name": "hp_test",
|
|||
|
"summary": "{\n \"name\": \"hp_test\",\n \"rows\": 1000,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 581,\n \"min\": 1000,\n \"max\": 2999,\n \"num_unique_values\": 792,\n \"samples\": [\n 2084,\n 2990,\n 1245\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 2,\n \"max\": 5,\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 4,\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 1,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20,\n \"min\": 1950,\n \"max\": 2021,\n \"num_unique_values\": 72,\n \"samples\": [\n 1982,\n 2016,\n 1960\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 74475.15532686812,\n \"min\": -7550.50457435759,\n \"max\": 437047.71344105,\n \"num_unique_values\": 1000,\n \"samples\": [\n 230653.38480715267,\n 204995.43595068945,\n 231582.08580545988\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"uint8\",\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 13
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"# Statystyki"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "NOERGp9pYt2R"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"### Wielkość podzbiorów"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "8qLEM0Ahis-X"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"housing_price_dataset.describe()"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 300
|
|||
|
},
|
|||
|
"id": "Cp-IN7cc2Dgr",
|
|||
|
"outputId": "d75f9cad-e097-4858-cd49-db618dcd42a3"
|
|||
|
},
|
|||
|
"execution_count": 21,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price\n",
|
|||
|
"count 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000\n",
|
|||
|
"mean 2006.374680 3.498700 1.995420 1985.404420 224827.325151\n",
|
|||
|
"std 575.513241 1.116326 0.815851 20.719377 76141.842966\n",
|
|||
|
"min 1000.000000 2.000000 1.000000 1950.000000 -36588.165397\n",
|
|||
|
"25% 1513.000000 3.000000 1.000000 1967.000000 169955.860225\n",
|
|||
|
"50% 2007.000000 3.000000 2.000000 1985.000000 225052.141166\n",
|
|||
|
"75% 2506.000000 4.000000 3.000000 2003.000000 279373.630052\n",
|
|||
|
"max 2999.000000 5.000000 3.000000 2021.000000 492195.259972"
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-7aae1c56-9f56-4494-a4ac-b562730ae374\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>50000.000000</td>\n",
|
|||
|
" <td>50000.000000</td>\n",
|
|||
|
" <td>50000.000000</td>\n",
|
|||
|
" <td>50000.000000</td>\n",
|
|||
|
" <td>50000.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>2006.374680</td>\n",
|
|||
|
" <td>3.498700</td>\n",
|
|||
|
" <td>1.995420</td>\n",
|
|||
|
" <td>1985.404420</td>\n",
|
|||
|
" <td>224827.325151</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>575.513241</td>\n",
|
|||
|
" <td>1.116326</td>\n",
|
|||
|
" <td>0.815851</td>\n",
|
|||
|
" <td>20.719377</td>\n",
|
|||
|
" <td>76141.842966</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1950.000000</td>\n",
|
|||
|
" <td>-36588.165397</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>1513.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1967.000000</td>\n",
|
|||
|
" <td>169955.860225</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>2007.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1985.000000</td>\n",
|
|||
|
" <td>225052.141166</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>2506.000000</td>\n",
|
|||
|
" <td>4.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2003.000000</td>\n",
|
|||
|
" <td>279373.630052</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>2999.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2021.000000</td>\n",
|
|||
|
" <td>492195.259972</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-7aae1c56-9f56-4494-a4ac-b562730ae374')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-7aae1c56-9f56-4494-a4ac-b562730ae374 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-7aae1c56-9f56-4494-a4ac-b562730ae374');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-d68153f8-bf7b-47f9-8c6e-765901ebe973\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-d68153f8-bf7b-47f9-8c6e-765901ebe973')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-d68153f8-bf7b-47f9-8c6e-765901ebe973 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"summary": "{\n \"name\": \"housing_price_dataset\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17058.702043862784,\n \"min\": 575.513241276615,\n \"max\": 50000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2006.37468,\n 2007.0,\n 50000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17676.577845369047,\n \"min\": 1.1163257739856558,\n \"max\": 50000.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 50000.0,\n 3.4987,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17677.02248379316,\n \"min\": 0.8158506823228849,\n \"max\": 50000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 50000.0,\n 1.99542,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17088.851960342447,\n \"min\": 20.71937668741524,\n \"max\": 50000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1985.40442,\n 1985.0,\n 50000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 162949.740052687,\n \"min\": -36588.16539749279,\n \"max\": 492195.2599720151,\n \"num_unique_values\": 8,\n \"samples\": [\n 224827.32515099045,\n 225052.14116600397,\n 50000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 21
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_train.shape"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "Icm98vi1X6Pe",
|
|||
|
"outputId": "207de571-34f3-4044-d970-9680ee895643"
|
|||
|
},
|
|||
|
"execution_count": 14,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(44000, 8)"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 14
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_dev.shape"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "LlqC13x0Ymm6",
|
|||
|
"outputId": "890f1281-0073-48ea-93d5-f86b03bf4564"
|
|||
|
},
|
|||
|
"execution_count": 15,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(5000, 8)"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 15
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_test.shape"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "8iwbOv4AYpk4",
|
|||
|
"outputId": "54f3ca4c-033d-47e9-f285-2a1d2c07538b"
|
|||
|
},
|
|||
|
"execution_count": 16,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(1000, 8)"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 16
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"source": [
|
|||
|
"### Statystyki kolumn"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"id": "Y2HnsCXxiypY"
|
|||
|
}
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_train.describe()"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 300
|
|||
|
},
|
|||
|
"id": "wAUskqnzi8Cl",
|
|||
|
"outputId": "9f558980-671c-4916-9877-604fa2537e5c"
|
|||
|
},
|
|||
|
"execution_count": 17,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"count 44000.000000 44000.000000 44000.000000 44000.000000 44000.000000 \n",
|
|||
|
"mean 2006.261182 3.499636 1.997864 1985.416750 224928.983383 \n",
|
|||
|
"std 575.306280 1.117315 0.815760 20.700559 76107.652516 \n",
|
|||
|
"min 1000.000000 2.000000 1.000000 1950.000000 -36588.165397 \n",
|
|||
|
"25% 1513.000000 3.000000 1.000000 1967.000000 170088.571867 \n",
|
|||
|
"50% 2007.000000 3.000000 2.000000 1985.000000 225246.904135 \n",
|
|||
|
"75% 2505.000000 5.000000 3.000000 2003.000000 279365.119289 \n",
|
|||
|
"max 2999.000000 5.000000 3.000000 2021.000000 492195.259972 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"count 44000.000000 44000.000000 44000.000000 \n",
|
|||
|
"mean 0.332841 0.333636 0.333523 \n",
|
|||
|
"std 0.471235 0.471517 0.471477 \n",
|
|||
|
"min 0.000000 0.000000 0.000000 \n",
|
|||
|
"25% 0.000000 0.000000 0.000000 \n",
|
|||
|
"50% 0.000000 0.000000 0.000000 \n",
|
|||
|
"75% 1.000000 1.000000 1.000000 \n",
|
|||
|
"max 1.000000 1.000000 1.000000 "
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-2223dbc3-5627-46ea-be81-2587126788d7\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" <td>44000.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>2006.261182</td>\n",
|
|||
|
" <td>3.499636</td>\n",
|
|||
|
" <td>1.997864</td>\n",
|
|||
|
" <td>1985.416750</td>\n",
|
|||
|
" <td>224928.983383</td>\n",
|
|||
|
" <td>0.332841</td>\n",
|
|||
|
" <td>0.333636</td>\n",
|
|||
|
" <td>0.333523</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>575.306280</td>\n",
|
|||
|
" <td>1.117315</td>\n",
|
|||
|
" <td>0.815760</td>\n",
|
|||
|
" <td>20.700559</td>\n",
|
|||
|
" <td>76107.652516</td>\n",
|
|||
|
" <td>0.471235</td>\n",
|
|||
|
" <td>0.471517</td>\n",
|
|||
|
" <td>0.471477</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1950.000000</td>\n",
|
|||
|
" <td>-36588.165397</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>1513.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1967.000000</td>\n",
|
|||
|
" <td>170088.571867</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>2007.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1985.000000</td>\n",
|
|||
|
" <td>225246.904135</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>2505.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2003.000000</td>\n",
|
|||
|
" <td>279365.119289</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>2999.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2021.000000</td>\n",
|
|||
|
" <td>492195.259972</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2223dbc3-5627-46ea-be81-2587126788d7')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-2223dbc3-5627-46ea-be81-2587126788d7 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-2223dbc3-5627-46ea-be81-2587126788d7');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-134a70fe-f3be-4778-aa13-c049d26c4190\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-134a70fe-f3be-4778-aa13-c049d26c4190')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-134a70fe-f3be-4778-aa13-c049d26c4190 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"summary": "{\n \"name\": \"hp_train\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14939.968071261836,\n \"min\": 575.3062795316038,\n \"max\": 44000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2006.2611818181817,\n 2007.0,\n 44000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15555.206914611437,\n \"min\": 1.1173145826824615,\n \"max\": 44000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 44000.0,\n 3.4996363636363634,\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15555.70202423901,\n \"min\": 0.8157604462168441,\n \"max\": 44000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 44000.0,\n 1.9978636363636364,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14969.494474985573,\n \"min\": 20.70055860487858,\n \"max\": 44000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1985.41675,\n 1985.0,\n 44000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 163684.07731051612,\n \"min\": -36588.16539749279,\n \"max\": 492195.2599720151,\n \"num_unique_values\": 8,\n \"samples\": [\n 224928.9833827127,\n 225246.9041353957,\n 44000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15556.207564412634,\n \"min\": 0.0,\n \"max\": 44000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3328409090909091,\n 1.0,\n 0.47123548806324117\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15556.207510022008,\n \"min\": 0.0,\n \"max\": 44000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3336363636363636,\n 1.0,\n 0.4715169068117858\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15556.207517787427,\n \"min\": 0.0,\n \"max\": 44000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.33352272727272725,\n 1.0,\n 0.47147679658615904\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 17
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_dev.describe()"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 300
|
|||
|
},
|
|||
|
"id": "BmM4_vWsjBK3",
|
|||
|
"outputId": "b0a1906f-9eac-46a5-84b6-0cdbea344d69"
|
|||
|
},
|
|||
|
"execution_count": 18,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"count 5000.000000 5000.000000 5000.000000 5000.000000 5000.000000 \n",
|
|||
|
"mean 2008.190800 3.487200 1.972600 1985.485400 224290.794530 \n",
|
|||
|
"std 576.206366 1.104753 0.816077 20.960049 76778.005658 \n",
|
|||
|
"min 1000.000000 2.000000 1.000000 1950.000000 -18159.685676 \n",
|
|||
|
"25% 1510.750000 3.000000 1.000000 1967.000000 169103.151768 \n",
|
|||
|
"50% 2007.000000 3.000000 2.000000 1985.000000 223614.924625 \n",
|
|||
|
"75% 2503.000000 4.000000 3.000000 2004.000000 279651.548644 \n",
|
|||
|
"max 2999.000000 5.000000 3.000000 2021.000000 467492.827823 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"count 5000.000000 5000.000000 5000.000000 \n",
|
|||
|
"mean 0.337800 0.341600 0.320600 \n",
|
|||
|
"std 0.473007 0.474294 0.466754 \n",
|
|||
|
"min 0.000000 0.000000 0.000000 \n",
|
|||
|
"25% 0.000000 0.000000 0.000000 \n",
|
|||
|
"50% 0.000000 0.000000 0.000000 \n",
|
|||
|
"75% 1.000000 1.000000 1.000000 \n",
|
|||
|
"max 1.000000 1.000000 1.000000 "
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-3a88c1a6-aca2-4090-80ae-854db7e8fbba\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" <td>5000.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>2008.190800</td>\n",
|
|||
|
" <td>3.487200</td>\n",
|
|||
|
" <td>1.972600</td>\n",
|
|||
|
" <td>1985.485400</td>\n",
|
|||
|
" <td>224290.794530</td>\n",
|
|||
|
" <td>0.337800</td>\n",
|
|||
|
" <td>0.341600</td>\n",
|
|||
|
" <td>0.320600</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>576.206366</td>\n",
|
|||
|
" <td>1.104753</td>\n",
|
|||
|
" <td>0.816077</td>\n",
|
|||
|
" <td>20.960049</td>\n",
|
|||
|
" <td>76778.005658</td>\n",
|
|||
|
" <td>0.473007</td>\n",
|
|||
|
" <td>0.474294</td>\n",
|
|||
|
" <td>0.466754</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1950.000000</td>\n",
|
|||
|
" <td>-18159.685676</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>1510.750000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1967.000000</td>\n",
|
|||
|
" <td>169103.151768</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>2007.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1985.000000</td>\n",
|
|||
|
" <td>223614.924625</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>2503.000000</td>\n",
|
|||
|
" <td>4.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2004.000000</td>\n",
|
|||
|
" <td>279651.548644</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>2999.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2021.000000</td>\n",
|
|||
|
" <td>467492.827823</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3a88c1a6-aca2-4090-80ae-854db7e8fbba')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-3a88c1a6-aca2-4090-80ae-854db7e8fbba button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-3a88c1a6-aca2-4090-80ae-854db7e8fbba');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-0c4f4805-cbb1-4a98-a845-0615781e0eb2\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-0c4f4805-cbb1-4a98-a845-0615781e0eb2')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-0c4f4805-cbb1-4a98-a845-0615781e0eb2 button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"summary": "{\n \"name\": \"hp_dev\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1373.0060319958575,\n \"min\": 576.2063661142855,\n \"max\": 5000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2008.1908,\n 2007.0,\n 5000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1766.6767900146253,\n \"min\": 1.1047534820271943,\n \"max\": 5000.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 5000.0,\n 3.4872,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1767.1212371098363,\n \"min\": 0.8160774696603855,\n \"max\": 5000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 5000.0,\n 1.9726,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1352.889275943266,\n \"min\": 20.9600489400744,\n \"max\": 5000.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1985.4854,\n 1985.0,\n 5000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 159056.8559402586,\n \"min\": -18159.685676249966,\n \"max\": 467492.8278233021,\n \"num_unique_values\": 8,\n \"samples\": [\n 224290.7945297919,\n 223614.92462488014,\n 5000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1767.6250346212444,\n \"min\": 0.0,\n \"max\": 5000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3378,\n 1.0,\n 0.4730073014039385\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1767.6247777120989,\n \"min\": 0.0,\n \"max\": 5000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3416,\n 1.0,\n 0.474293612529388\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1767.626219259249,\n \"min\": 0.0,\n \"max\": 5000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3206,\n 1.0,\n 0.4667539092952179\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 18
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"hp_test.describe()"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 300
|
|||
|
},
|
|||
|
"id": "T7edA8gVjBfU",
|
|||
|
"outputId": "99be05f6-e25f-45ae-9e4f-7f293d1ac14c"
|
|||
|
},
|
|||
|
"execution_count": 19,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "execute_result",
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
" SquareFeet Bedrooms Bathrooms YearBuilt Price \\\n",
|
|||
|
"count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 \n",
|
|||
|
"mean 2002.288000 3.515000 2.002000 1984.457000 223037.016061 \n",
|
|||
|
"std 581.670136 1.130953 0.817719 20.330949 74475.155327 \n",
|
|||
|
"min 1000.000000 2.000000 1.000000 1950.000000 -7550.504574 \n",
|
|||
|
"25% 1507.250000 2.000000 1.000000 1967.000000 168905.529102 \n",
|
|||
|
"50% 2021.500000 4.000000 2.000000 1983.000000 220416.485632 \n",
|
|||
|
"75% 2524.000000 5.000000 3.000000 2002.000000 279628.697596 \n",
|
|||
|
"max 2999.000000 5.000000 3.000000 2021.000000 437047.713441 \n",
|
|||
|
"\n",
|
|||
|
" Neighborhood_Rural Neighborhood_Suburb Neighborhood_Urban \n",
|
|||
|
"count 1000.000000 1000.000000 1000.000000 \n",
|
|||
|
"mean 0.342000 0.333000 0.325000 \n",
|
|||
|
"std 0.474617 0.471522 0.468609 \n",
|
|||
|
"min 0.000000 0.000000 0.000000 \n",
|
|||
|
"25% 0.000000 0.000000 0.000000 \n",
|
|||
|
"50% 0.000000 0.000000 0.000000 \n",
|
|||
|
"75% 1.000000 1.000000 1.000000 \n",
|
|||
|
"max 1.000000 1.000000 1.000000 "
|
|||
|
],
|
|||
|
"text/html": [
|
|||
|
"\n",
|
|||
|
" <div id=\"df-83a49760-99ab-4703-b53f-d2e8d4fc84c3\" class=\"colab-df-container\">\n",
|
|||
|
" <div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>SquareFeet</th>\n",
|
|||
|
" <th>Bedrooms</th>\n",
|
|||
|
" <th>Bathrooms</th>\n",
|
|||
|
" <th>YearBuilt</th>\n",
|
|||
|
" <th>Price</th>\n",
|
|||
|
" <th>Neighborhood_Rural</th>\n",
|
|||
|
" <th>Neighborhood_Suburb</th>\n",
|
|||
|
" <th>Neighborhood_Urban</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>2002.288000</td>\n",
|
|||
|
" <td>3.515000</td>\n",
|
|||
|
" <td>2.002000</td>\n",
|
|||
|
" <td>1984.457000</td>\n",
|
|||
|
" <td>223037.016061</td>\n",
|
|||
|
" <td>0.342000</td>\n",
|
|||
|
" <td>0.333000</td>\n",
|
|||
|
" <td>0.325000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>581.670136</td>\n",
|
|||
|
" <td>1.130953</td>\n",
|
|||
|
" <td>0.817719</td>\n",
|
|||
|
" <td>20.330949</td>\n",
|
|||
|
" <td>74475.155327</td>\n",
|
|||
|
" <td>0.474617</td>\n",
|
|||
|
" <td>0.471522</td>\n",
|
|||
|
" <td>0.468609</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1950.000000</td>\n",
|
|||
|
" <td>-7550.504574</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>1507.250000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1967.000000</td>\n",
|
|||
|
" <td>168905.529102</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>2021.500000</td>\n",
|
|||
|
" <td>4.000000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>1983.000000</td>\n",
|
|||
|
" <td>220416.485632</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>2524.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2002.000000</td>\n",
|
|||
|
" <td>279628.697596</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>2999.000000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>2021.000000</td>\n",
|
|||
|
" <td>437047.713441</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>\n",
|
|||
|
" <div class=\"colab-df-buttons\">\n",
|
|||
|
"\n",
|
|||
|
" <div class=\"colab-df-container\">\n",
|
|||
|
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-83a49760-99ab-4703-b53f-d2e8d4fc84c3')\"\n",
|
|||
|
" title=\"Convert this dataframe to an interactive table.\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
|||
|
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
|||
|
" </svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
" <style>\n",
|
|||
|
" .colab-df-container {\n",
|
|||
|
" display:flex;\n",
|
|||
|
" gap: 12px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert {\n",
|
|||
|
" background-color: #E8F0FE;\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: #1967D2;\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0 0 0 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-convert:hover {\n",
|
|||
|
" background-color: #E2EBFA;\n",
|
|||
|
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: #174EA6;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-buttons div {\n",
|
|||
|
" margin-bottom: 4px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert {\n",
|
|||
|
" background-color: #3B4455;\n",
|
|||
|
" fill: #D2E3FC;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-convert:hover {\n",
|
|||
|
" background-color: #434B5C;\n",
|
|||
|
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
|||
|
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
|||
|
" fill: #FFFFFF;\n",
|
|||
|
" }\n",
|
|||
|
" </style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" const buttonEl =\n",
|
|||
|
" document.querySelector('#df-83a49760-99ab-4703-b53f-d2e8d4fc84c3 button.colab-df-convert');\n",
|
|||
|
" buttonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
"\n",
|
|||
|
" async function convertToInteractive(key) {\n",
|
|||
|
" const element = document.querySelector('#df-83a49760-99ab-4703-b53f-d2e8d4fc84c3');\n",
|
|||
|
" const dataTable =\n",
|
|||
|
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
|||
|
" [key], {});\n",
|
|||
|
" if (!dataTable) return;\n",
|
|||
|
"\n",
|
|||
|
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
|||
|
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
|||
|
" + ' to learn more about interactive tables.';\n",
|
|||
|
" element.innerHTML = '';\n",
|
|||
|
" dataTable['output_type'] = 'display_data';\n",
|
|||
|
" await google.colab.output.renderOutput(dataTable, element);\n",
|
|||
|
" const docLink = document.createElement('div');\n",
|
|||
|
" docLink.innerHTML = docLinkHtml;\n",
|
|||
|
" element.appendChild(docLink);\n",
|
|||
|
" }\n",
|
|||
|
" </script>\n",
|
|||
|
" </div>\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<div id=\"df-64da87a7-4bfb-4db0-8cba-1e1d0ad9438a\">\n",
|
|||
|
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-64da87a7-4bfb-4db0-8cba-1e1d0ad9438a')\"\n",
|
|||
|
" title=\"Suggest charts\"\n",
|
|||
|
" style=\"display:none;\">\n",
|
|||
|
"\n",
|
|||
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
|||
|
" width=\"24px\">\n",
|
|||
|
" <g>\n",
|
|||
|
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
"</svg>\n",
|
|||
|
" </button>\n",
|
|||
|
"\n",
|
|||
|
"<style>\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #E8F0FE;\n",
|
|||
|
" --fill-color: #1967D2;\n",
|
|||
|
" --hover-bg-color: #E2EBFA;\n",
|
|||
|
" --hover-fill-color: #174EA6;\n",
|
|||
|
" --disabled-fill-color: #AAA;\n",
|
|||
|
" --disabled-bg-color: #DDD;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" [theme=dark] .colab-df-quickchart {\n",
|
|||
|
" --bg-color: #3B4455;\n",
|
|||
|
" --fill-color: #D2E3FC;\n",
|
|||
|
" --hover-bg-color: #434B5C;\n",
|
|||
|
" --hover-fill-color: #FFFFFF;\n",
|
|||
|
" --disabled-bg-color: #3B4455;\n",
|
|||
|
" --disabled-fill-color: #666;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart {\n",
|
|||
|
" background-color: var(--bg-color);\n",
|
|||
|
" border: none;\n",
|
|||
|
" border-radius: 50%;\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: none;\n",
|
|||
|
" fill: var(--fill-color);\n",
|
|||
|
" height: 32px;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" width: 32px;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart:hover {\n",
|
|||
|
" background-color: var(--hover-bg-color);\n",
|
|||
|
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
|||
|
" fill: var(--button-hover-fill-color);\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-quickchart-complete:disabled,\n",
|
|||
|
" .colab-df-quickchart-complete:disabled:hover {\n",
|
|||
|
" background-color: var(--disabled-bg-color);\n",
|
|||
|
" fill: var(--disabled-fill-color);\n",
|
|||
|
" box-shadow: none;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .colab-df-spinner {\n",
|
|||
|
" border: 2px solid var(--fill-color);\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" animation:\n",
|
|||
|
" spin 1s steps(1) infinite;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" @keyframes spin {\n",
|
|||
|
" 0% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 20% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 30% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-left-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 40% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-top-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 60% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 80% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-right-color: var(--fill-color);\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" 90% {\n",
|
|||
|
" border-color: transparent;\n",
|
|||
|
" border-bottom-color: var(--fill-color);\n",
|
|||
|
" }\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"\n",
|
|||
|
" <script>\n",
|
|||
|
" async function quickchart(key) {\n",
|
|||
|
" const quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#' + key + ' button');\n",
|
|||
|
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
|||
|
" try {\n",
|
|||
|
" const charts = await google.colab.kernel.invokeFunction(\n",
|
|||
|
" 'suggestCharts', [key], {});\n",
|
|||
|
" } catch (error) {\n",
|
|||
|
" console.error('Error during call to suggestCharts:', error);\n",
|
|||
|
" }\n",
|
|||
|
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
|||
|
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
|||
|
" }\n",
|
|||
|
" (() => {\n",
|
|||
|
" let quickchartButtonEl =\n",
|
|||
|
" document.querySelector('#df-64da87a7-4bfb-4db0-8cba-1e1d0ad9438a button');\n",
|
|||
|
" quickchartButtonEl.style.display =\n",
|
|||
|
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
|||
|
" })();\n",
|
|||
|
" </script>\n",
|
|||
|
"</div>\n",
|
|||
|
" </div>\n",
|
|||
|
" </div>\n"
|
|||
|
],
|
|||
|
"application/vnd.google.colaboratory.intrinsic+json": {
|
|||
|
"type": "dataframe",
|
|||
|
"summary": "{\n \"name\": \"hp_test\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"SquareFeet\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 830.5567967260185,\n \"min\": 581.6701360764563,\n \"max\": 2999.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1000.0,\n 2002.288,\n 2524.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bedrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 352.4125101562337,\n \"min\": 1.1309527196368794,\n \"max\": 1000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1000.0,\n 3.515,\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Bathrooms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 352.9069492337987,\n \"min\": 0.8177191844787945,\n \"max\": 1000.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1000.0,\n 2.002,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"YearBuilt\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 731.3239730266098,\n \"min\": 20.330949276866008,\n \"max\": 2021.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1984.457,\n 1983.0,\n 1000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 150108.67450064773,\n \"min\": -7550.50457435759,\n \"max\": 437047.71344105,\n \"num_unique_values\": 8,\n \"samples\": [\n 223037.01606120248,\n 220416.4856317892,\n 1000.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Rural\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 353.41137428502344,\n \"min\": 0.0,\n \"max\": 1000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.342,\n 1.0,\n 0.4746169626775482\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Suburb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 353.4119852977801,\n \"min\": 0.0,\n \"max\": 1000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.333,\n 1.0,\n 0.4715223571935199\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Neighborhood_Urban\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 353.4125366409159,\n \"min\": 0.0,\n \"max\": 1000.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.325,\n 1.0,\n 0.46860921309188386\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"execution_count": 19
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"source": [
|
|||
|
"def print_sum(df_name, df):\n",
|
|||
|
" columns = ['Neighborhood_Rural', 'Neighborhood_Suburb', 'Neighborhood_Urban']\n",
|
|||
|
" print(df_name)\n",
|
|||
|
" for col in columns:\n",
|
|||
|
" print(col, df[col].sum())\n",
|
|||
|
" print()\n",
|
|||
|
"\n",
|
|||
|
"print_sum(\"hp_train\", hp_train)\n",
|
|||
|
"print_sum(\"hp_dev\", hp_dev)\n",
|
|||
|
"print_sum(\"hp_test\", hp_test)"
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "7RBghGHvwEUe",
|
|||
|
"outputId": "e472b811-18fe-4530-b28f-37a9a9f4ed70"
|
|||
|
},
|
|||
|
"execution_count": 20,
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"output_type": "stream",
|
|||
|
"name": "stdout",
|
|||
|
"text": [
|
|||
|
"hp_train\n",
|
|||
|
"Neighborhood_Rural 14645\n",
|
|||
|
"Neighborhood_Suburb 14680\n",
|
|||
|
"Neighborhood_Urban 14675\n",
|
|||
|
"\n",
|
|||
|
"hp_dev\n",
|
|||
|
"Neighborhood_Rural 1689\n",
|
|||
|
"Neighborhood_Suburb 1708\n",
|
|||
|
"Neighborhood_Urban 1603\n",
|
|||
|
"\n",
|
|||
|
"hp_test\n",
|
|||
|
"Neighborhood_Rural 342\n",
|
|||
|
"Neighborhood_Suburb 333\n",
|
|||
|
"Neighborhood_Urban 325\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
}
|