2024-04-27 18:00:53 +02:00
|
|
|
import pandas as pd
|
2024-05-14 15:32:43 +02:00
|
|
|
import sys
|
2024-04-27 18:00:53 +02:00
|
|
|
from keras.models import Sequential
|
|
|
|
from keras.layers import Dense
|
|
|
|
from keras.optimizers import Adam
|
|
|
|
from keras import regularizers
|
|
|
|
|
|
|
|
from helper import prepare_tensors
|
|
|
|
|
2024-05-14 15:32:43 +02:00
|
|
|
epochs = int(sys.argv[1])
|
|
|
|
|
2024-04-27 18:00:53 +02:00
|
|
|
hp_train = pd.read_csv('hp_train.csv')
|
|
|
|
hp_dev = pd.read_csv('hp_dev.csv')
|
|
|
|
|
|
|
|
X_train, Y_train = prepare_tensors(hp_train)
|
|
|
|
X_dev, Y_dev = prepare_tensors(hp_dev)
|
|
|
|
|
|
|
|
model = Sequential()
|
|
|
|
model.add(Dense(64, input_dim=7, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
|
|
model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
|
|
model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
|
|
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
|
|
model.add(Dense(1, activation='linear'))
|
|
|
|
|
|
|
|
adam = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7)
|
|
|
|
model.compile(optimizer=adam, loss='mean_squared_error')
|
|
|
|
|
2024-05-14 15:32:43 +02:00
|
|
|
model.fit(X_train, Y_train, epochs=epochs, batch_size=32, validation_data=(X_dev, Y_dev))
|
2024-04-27 18:00:53 +02:00
|
|
|
|
|
|
|
model.save('hp_model.h5')
|