Do sacred
This commit is contained in:
parent
1245979730
commit
52ede7236e
@ -2,7 +2,7 @@ FROM ubuntu:latest
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y python3-pip && \
|
||||
pip3 install kaggle pandas scikit-learn tensorflow matplotlib mlflow
|
||||
pip3 install kaggle pandas scikit-learn tensorflow matplotlib mlflow git sacred pymongo
|
||||
|
||||
RUN useradd -ms /bin/bash jenkins
|
||||
|
||||
|
44
JenkinsfileSacred
Normal file
44
JenkinsfileSacred
Normal file
@ -0,0 +1,44 @@
|
||||
pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
|
||||
parameters{
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'BUILD_SELECTOR'
|
||||
)
|
||||
}
|
||||
|
||||
triggers {
|
||||
upstream(upstreamProjects: 'z-s495719-create-dataset', threshold: hudson.model.Result.SUCCESS)
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Git') {
|
||||
steps {
|
||||
git(
|
||||
url: "https://git.wmi.amu.edu.pl/s495719/ium_495719.git",
|
||||
branch: "main"
|
||||
)
|
||||
}
|
||||
}
|
||||
stage('CopyArtifacts') {
|
||||
steps {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 'z-s495719-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('Script') {
|
||||
steps {
|
||||
sh 'chmod 777 sacred/create_model.py'
|
||||
sh "python3 sacred/create_model.py"
|
||||
}
|
||||
}
|
||||
stage('CreateArtifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'sacred/hp_model.h5'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
5001
hp_dev.csv
Normal file
5001
hp_dev.csv
Normal file
File diff suppressed because it is too large
Load Diff
1001
hp_test.csv
Normal file
1001
hp_test.csv
Normal file
File diff suppressed because it is too large
Load Diff
44001
hp_train.csv
Normal file
44001
hp_train.csv
Normal file
File diff suppressed because it is too large
Load Diff
69
sacred/create_model.py
Normal file
69
sacred/create_model.py
Normal file
@ -0,0 +1,69 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense
|
||||
from keras.optimizers import Adam
|
||||
from keras import regularizers
|
||||
from sacred import Experiment
|
||||
from sacred.observers import MongoObserver, FileStorageObserver
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
|
||||
from helper import prepare_tensors
|
||||
|
||||
ex = Experiment('495719')
|
||||
|
||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
@ex.config
|
||||
def config():
|
||||
epochs = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 32
|
||||
|
||||
@ex.main
|
||||
def main(epochs, learning_rate, batch_size, _run):
|
||||
with _run.open_resource("../hp_train.csv") as f:
|
||||
hp_train = pd.read_csv(f)
|
||||
with _run.open_resource("../hp_dev.csv") as f:
|
||||
hp_dev = pd.read_csv(f)
|
||||
|
||||
X_train, Y_train = prepare_tensors(hp_train)
|
||||
X_dev, Y_dev = prepare_tensors(hp_dev)
|
||||
|
||||
model = Sequential()
|
||||
model.add(Dense(64, input_dim=7, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dense(1, activation='linear'))
|
||||
|
||||
adam = Adam(learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-7)
|
||||
model.compile(optimizer=adam, loss='mean_squared_error')
|
||||
|
||||
model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_dev, Y_dev))
|
||||
|
||||
model.save('hp_model.h5')
|
||||
ex.add_artifact("hp_model.h5")
|
||||
|
||||
with _run.open_resource("../hp_test.csv") as f:
|
||||
hp_test = pd.read_csv(f)
|
||||
|
||||
X_test, Y_test = prepare_tensors(hp_test)
|
||||
|
||||
test_predictions = model.predict(X_test)
|
||||
|
||||
predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"])
|
||||
predictions_df.to_csv('hp_test_predictions.csv', index=False)
|
||||
|
||||
rmse = np.sqrt(mean_squared_error(Y_test, test_predictions))
|
||||
mae = mean_absolute_error(Y_test, test_predictions)
|
||||
r2 = r2_score(Y_test, test_predictions)
|
||||
|
||||
_run.log_scalar("rmse", rmse)
|
||||
_run.log_scalar("mae", mae)
|
||||
_run.log_scalar("r2", r2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ex.run()
|
Loading…
Reference in New Issue
Block a user