fix github workflow

This commit is contained in:
PawelDopierala 2024-06-06 01:59:07 +02:00
parent d051818515
commit 855fc593d8
6 changed files with 50104 additions and 2 deletions

View File

@ -35,7 +35,7 @@ jobs:
pip install pandas scikit-learn tensorflow matplotlib mlflow
- name: Train Model
run: python create_model.py ${{ github.event.inputs.epochs }} ${{ github.event.inputs.learning_rate }} ${{ github.event.inputs.batch_size }}
run: python ./github_project/create_model.py ${{ github.event.inputs.epochs }} ${{ github.event.inputs.learning_rate }} ${{ github.event.inputs.batch_size }}
- name: Evaluate Model
run: python evaluate.py ${{ github.run_number }}
run: python ./github_project/evaluate.py ${{ github.run_number }}

View File

@ -0,0 +1,38 @@
import pandas as pd
import sys
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras import regularizers
import mlflow
from helper import prepare_tensors
epochs = int(sys.argv[1])
learning_rate = float(sys.argv[2])
batch_size = int(sys.argv[3])
hp_train = pd.read_csv('hp_train.csv')
hp_dev = pd.read_csv('hp_dev.csv')
X_train, Y_train = prepare_tensors(hp_train)
X_dev, Y_dev = prepare_tensors(hp_dev)
model = Sequential()
model.add(Dense(64, input_dim=7, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(1, activation='linear'))
adam = Adam(learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-7)
model.compile(optimizer=adam, loss='mean_squared_error')
model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_dev, Y_dev))
model.save('hp_model.h5')
with mlflow.start_run() as run:
mlflow.log_param("epochs", epochs)
mlflow.log_param("learning_rate", learning_rate)
mlflow.log_param("batch_size", batch_size)

View File

@ -0,0 +1,61 @@
import pandas as pd
import numpy as np
import sys
import os
import mlflow
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from keras.models import load_model
from helper import prepare_tensors
import matplotlib.pyplot as plt
if len(sys.argv) > 1:
build_number = int(sys.argv[1])
else:
build_number = 0
hp_test = pd.read_csv('hp_test.csv')
X_test, Y_test = prepare_tensors(hp_test)
model = load_model('hp_model.h5')
test_predictions = model.predict(X_test)
predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"])
predictions_df.to_csv('hp_test_predictions.csv', index=False)
rmse = np.sqrt(mean_squared_error(Y_test, test_predictions))
mae = mean_absolute_error(Y_test, test_predictions)
r2 = r2_score(Y_test, test_predictions)
metrics_df = pd.DataFrame({
'Build_Number': [build_number],
'RMSE': [rmse],
'MAE': [mae],
'R2': [r2]
})
metrics_file = 'hp_test_metrics.csv'
if os.path.isfile(metrics_file):
existing_metrics_df = pd.read_csv(metrics_file)
updated_metrics_df = pd.concat([existing_metrics_df, metrics_df], ignore_index=True)
else:
updated_metrics_df = metrics_df
updated_metrics_df.to_csv(metrics_file, index=False)
metrics = ['RMSE', 'MAE', 'R2']
for metric in metrics:
plt.plot(updated_metrics_df['Build_Number'], updated_metrics_df[metric], marker='o')
plt.title(f'{metric} vs Builds')
plt.xlabel('Build Number')
plt.ylabel(metric)
plt.grid(True)
plot_file = f'plot_{metric.lower()}.png'
plt.savefig(plot_file)
plt.close()
with mlflow.start_run() as run:
mlflow.log_metric('RMSE', rmse)
mlflow.log_metric('MAE', mae)
mlflow.log_metric('R2', r2)

5001
github_project/hp_dev.csv Normal file

File diff suppressed because it is too large Load Diff

1001
github_project/hp_test.csv Normal file

File diff suppressed because it is too large Load Diff

44001
github_project/hp_train.csv Normal file

File diff suppressed because it is too large Load Diff