Do evaluation

This commit is contained in:
PawelDopierala 2024-05-14 16:21:16 +02:00
parent 8b1a58f696
commit de0cce83f9
2 changed files with 85 additions and 0 deletions

46
JenkinsfileEvaluation Normal file
View File

@ -0,0 +1,46 @@
pipeline {
agent {
dockerfile true
}
parameters{
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR'
)
}
triggers {
upstream(upstreamProjects: 's495719-training', threshold: hudson.model.Result.SUCCESS)
}
stages {
stage('Git') {
steps {
git(
url: "https://git.wmi.amu.edu.pl/s495719/ium_495719.git",
branch: "main"
)
}
}
stage('CopyArtifacts') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's495719-create-dataset', selector: buildParameter('BUILD_SELECTOR')
copyArtifacts fingerprintArtifacts: true, projectName: 's495719-training', selector: buildParameter('BUILD_SELECTOR')
copyArtifacts fingerprintArtifacts: true, projectName: 's495719-evaluation', selector: buildParameter('BUILD_SELECTOR'), optional: true
}
}
stage('Script') {
steps {
sh 'chmod 777 ./evaluate.py'
sh "python3 ./evaluate.py ${currentBuild.number}"
}
}
stage('CreateArtifacts') {
steps {
archiveArtifacts artifacts: 'hp_test_predictions.csv,hp_test_metrics.csv'
}
}
}
}

39
evaluate.py Normal file
View File

@ -0,0 +1,39 @@
import pandas as pd
import numpy as np
import sys
import os
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from keras.models import load_model
from helper import prepare_tensors
build_number = int(sys.argv[1])
hp_test = pd.read_csv('hp_test.csv')
X_test, Y_test = prepare_tensors(hp_test)
model = load_model('hp_model.h5')
test_predictions = model.predict(X_test)
predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"])
predictions_df.to_csv('hp_test_predictions.csv', index=False)
rmse = np.sqrt(mean_squared_error(Y_test, test_predictions))
mae = mean_absolute_error(Y_test, test_predictions)
r2 = r2_score(Y_test, test_predictions)
metrics_df = pd.DataFrame({
'Build_Number': [build_number],
'RMSE': [rmse],
'MAE': [mae],
'R2': [r2]
})
metrics_file = 'hp_test_metrics.csv'
if os.path.isfile(metrics_file):
existing_metrics_df = pd.read_csv(metrics_file)
updated_metrics_df = pd.concat([existing_metrics_df, metrics_df], ignore_index=True)
else:
updated_metrics_df = metrics_df
updated_metrics_df.to_csv(metrics_file, index=False)