import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from keras import regularizers from sacred import Experiment from sacred.observers import MongoObserver, FileStorageObserver from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from helper import prepare_tensors ex = Experiment('495719') ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017')) ex.observers.append(FileStorageObserver('my_runs')) @ex.config def config(): epochs = 10 learning_rate = 0.001 batch_size = 32 @ex.main def main(epochs, learning_rate, batch_size, _run): with _run.open_resource("../hp_train.csv") as f: hp_train = pd.read_csv(f) with _run.open_resource("../hp_dev.csv") as f: hp_dev = pd.read_csv(f) X_train, Y_train = prepare_tensors(hp_train) X_dev, Y_dev = prepare_tensors(hp_dev) model = Sequential() model.add(Dense(64, input_dim=7, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(1, activation='linear')) adam = Adam(learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-7) model.compile(optimizer=adam, loss='mean_squared_error') model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_dev, Y_dev)) model.save('hp_model.h5') ex.add_artifact("hp_model.h5") with _run.open_resource("../hp_test.csv") as f: hp_test = pd.read_csv(f) X_test, Y_test = prepare_tensors(hp_test) test_predictions = model.predict(X_test) predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"]) predictions_df.to_csv('hp_test_predictions.csv', index=False) rmse = np.sqrt(mean_squared_error(Y_test, test_predictions)) mae = mean_absolute_error(Y_test, test_predictions) r2 = r2_score(Y_test, test_predictions) _run.log_scalar("rmse", rmse) _run.log_scalar("mae", mae) _run.log_scalar("r2", r2) if __name__ == '__main__': ex.run()