import sklearn from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split import pandas as pd import subprocess subprocess.run(["kaggle", "datasets", "download", "muhammadbinimran/housing-price-prediction-data", "--unzip"]) housing_price_dataset = pd.read_csv('housing_price_dataset.csv') hp_train_test, hp_dev = sklearn.model_selection.train_test_split(housing_price_dataset, test_size=0.1) hp_train, hp_test = sklearn.model_selection.train_test_split(hp_train_test, test_size=1000) hp_train = pd.get_dummies(hp_train, columns=['Neighborhood']) hp_dev = pd.get_dummies(hp_dev, columns=['Neighborhood']) hp_test = pd.get_dummies(hp_test, columns=['Neighborhood']) hp_train.to_csv('hp_train.csv', index=False) hp_dev.to_csv('hp_dev.csv', index=False) hp_test.to_csv('hp_test.csv', index=False)