import pandas as pd import numpy as np import sys import os from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from keras.models import load_model from helper import prepare_tensors build_number = int(sys.argv[1]) hp_test = pd.read_csv('hp_test.csv') X_test, Y_test = prepare_tensors(hp_test) model = load_model('hp_model.h5') test_predictions = model.predict(X_test) predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"]) predictions_df.to_csv('hp_test_predictions.csv', index=False) rmse = np.sqrt(mean_squared_error(Y_test, test_predictions)) mae = mean_absolute_error(Y_test, test_predictions) r2 = r2_score(Y_test, test_predictions) metrics_df = pd.DataFrame({ 'Build_Number': [build_number], 'RMSE': [rmse], 'MAE': [mae], 'R2': [r2] }) metrics_file = 'hp_test_metrics.csv' if os.path.isfile(metrics_file): existing_metrics_df = pd.read_csv(metrics_file) updated_metrics_df = pd.concat([existing_metrics_df, metrics_df], ignore_index=True) else: updated_metrics_df = metrics_df updated_metrics_df.to_csv(metrics_file, index=False)