clean code
This commit is contained in:
parent
10c6742b86
commit
3e72d809ec
@ -0,0 +1,2 @@
|
||||
numpy==1.26.4
|
||||
matplotlib==3.9.0
|
125
src/cluster.py
Normal file
125
src/cluster.py
Normal file
@ -0,0 +1,125 @@
|
||||
from math import sqrt
|
||||
from random import randrange
|
||||
from typing import Any, List, Tuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Cluster:
|
||||
def __init__(self, centroid: Tuple[Any]):
|
||||
self.centroid = centroid
|
||||
self.color = np.random.rand(3,)
|
||||
self.points = list()
|
||||
self.dimension = len(self.centroid)
|
||||
if self.dimension != 2 and self.dimension % 3 != 0:
|
||||
raise ValueError('dimension must be 2 or a multiple of 3')
|
||||
|
||||
def distance(self, point: Tuple[Any]) -> float:
|
||||
sum = 0
|
||||
for dim, p in enumerate(self.centroid):
|
||||
sum += (p - point[dim]) ** 2
|
||||
return sqrt(sum)
|
||||
|
||||
def append(self, point: Tuple[Any]) -> None:
|
||||
self.points.append(point)
|
||||
|
||||
def draw(self, draw_centroid: bool = True, *args) -> None:
|
||||
if len(self.points) == 0:
|
||||
return
|
||||
if self.dimension == 2:
|
||||
if draw_centroid:
|
||||
plt.scatter(*zip(*self.points), c=self.color),
|
||||
plt.scatter(
|
||||
self.centroid[0], self.centroid[1], c=self.color, edgecolors='k')
|
||||
return
|
||||
plt.scatter(*zip(*self.points), c=self.color)
|
||||
elif self.dimension % 3 == 0:
|
||||
unzipped = list(map(list, zip(*self.points)))
|
||||
for i, ax in enumerate(args):
|
||||
ax.scatter(*unzipped[i * 3: (i + 1) * 3])
|
||||
|
||||
def clear(self) -> None:
|
||||
self.points = list()
|
||||
|
||||
def calc_new_centroid(self) -> bool:
|
||||
if len(self.points) == 0:
|
||||
return False
|
||||
arr = np.array(self.points)
|
||||
new_centroid = tuple(np.average(arr, axis=0))
|
||||
if new_centroid == self.centroid:
|
||||
return False
|
||||
else:
|
||||
self.clear()
|
||||
self.centroid = new_centroid
|
||||
return True
|
||||
|
||||
|
||||
def generate_clusters(number_of_clusters: int, number_of_dimensions: int, random_range=0) -> List[Cluster]:
|
||||
return [Cluster([randrange(random_range) for _ in range(number_of_dimensions)]) for _ in range(number_of_clusters)]
|
||||
|
||||
|
||||
def k_means(points: Tuple[Any], clusters: List[Cluster], max_iter: int = 1e9):
|
||||
for _ in range(int(max_iter)):
|
||||
for point in points:
|
||||
ind = 0
|
||||
best = 1e7
|
||||
for i, cluster in enumerate(clusters):
|
||||
d = cluster.distance(point)
|
||||
if d < best:
|
||||
best = d
|
||||
ind = i
|
||||
clusters[ind].append(point)
|
||||
progress = False
|
||||
for cluster in clusters:
|
||||
changed = cluster.calc_new_centroid()
|
||||
if changed:
|
||||
progress = True
|
||||
if not progress:
|
||||
break
|
||||
|
||||
# TODO: Delete below code
|
||||
def load_file(filepath: str):
|
||||
points = list()
|
||||
with open(filepath, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
point = list(map(int, line.split()))
|
||||
points.append(point)
|
||||
return points
|
||||
|
||||
|
||||
def main(dimension: str):
|
||||
if dimension.lower() == '2d':
|
||||
number_of_clusters = 15
|
||||
dim = 2
|
||||
random_range = int(1e6)
|
||||
points = load_file("./s1.txt")
|
||||
elif dimension.lower() == '9d':
|
||||
number_of_clusters = 2
|
||||
dim = 9
|
||||
random_range = int(10)
|
||||
points = load_file("./breast.txt")
|
||||
else:
|
||||
raise ValueError('dimension must be 2d or 9d')
|
||||
|
||||
clusters = generate_clusters(number_of_clusters, dim, random_range)
|
||||
|
||||
k_means(points, clusters)
|
||||
|
||||
if dimension.lower() == '9d':
|
||||
fig = plt.figure(figsize=(20, 10))
|
||||
ax1 = fig.add_subplot(131, projection='3d')
|
||||
ax2 = fig.add_subplot(132, projection='3d')
|
||||
ax3 = fig.add_subplot(133, projection='3d')
|
||||
for cluster in clusters:
|
||||
cluster.draw(False, ax1, ax2, ax3)
|
||||
else:
|
||||
for cluster in clusters:
|
||||
cluster.draw()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main('2d')
|
||||
# main('9d')
|
@ -1,141 +0,0 @@
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from math import sqrt
|
||||
from random import randrange, random
|
||||
|
||||
WORKDIR = './lab1'
|
||||
|
||||
|
||||
class Cluster:
|
||||
def __init__(self, centroid, color):
|
||||
self.centroid = centroid
|
||||
self.color = color
|
||||
self.points = list()
|
||||
|
||||
def distance(self, point):
|
||||
sum = 0
|
||||
for dim, p in enumerate(self.centroid):
|
||||
sum += (p - point[dim]) ** 2
|
||||
return sqrt(sum)
|
||||
|
||||
def append(self, point):
|
||||
self.points.append(point)
|
||||
|
||||
def draw(self, with_centroids=True, ax1=None, ax2=None, ax3=None):
|
||||
if len(self.points) != 0:
|
||||
if len(self.points[0]) > 2:
|
||||
unzipped = list(map(list, zip(*self.points)))
|
||||
ax1.scatter(unzipped[0], unzipped[1], unzipped[2])
|
||||
ax2.scatter(unzipped[3], unzipped[4], unzipped[5])
|
||||
ax3.scatter(unzipped[6], unzipped[7], unzipped[8])
|
||||
else:
|
||||
plt.scatter(*zip(*self.points), c=self.color)
|
||||
if with_centroids:
|
||||
plt.scatter(
|
||||
self.centroid[0], self.centroid[1], c=self.color, edgecolors='k')
|
||||
|
||||
def clear(self):
|
||||
self.points = []
|
||||
|
||||
def calc_new_centroid(self):
|
||||
if len(self.points) == 0:
|
||||
return False
|
||||
arr = np.array(self.points)
|
||||
new_centroid = np.average(arr, axis=0).tolist()
|
||||
if new_centroid == self.centroid:
|
||||
return False
|
||||
else:
|
||||
self.clear()
|
||||
self.centroid = new_centroid
|
||||
return True
|
||||
|
||||
|
||||
def generate_clusters(number_of_clusters: int, number_of_dimensions: int, random_range=0, with_centroids: bool = True):
|
||||
clusters = list()
|
||||
if with_centroids:
|
||||
for _ in range(number_of_clusters):
|
||||
clusters.append(Cluster([randrange(random_range)
|
||||
for i in range(number_of_dimensions)], [random(), random(), random()]))
|
||||
else:
|
||||
for _ in range(number_of_clusters):
|
||||
clusters.append(Cluster([-1
|
||||
for i in range(number_of_dimensions)], [random(), random(), random()]))
|
||||
return clusters
|
||||
|
||||
|
||||
def k_mean(points, clusters):
|
||||
while True:
|
||||
for point in points:
|
||||
ind = 0
|
||||
best = 1e7
|
||||
for i, cluster in enumerate(clusters):
|
||||
d = cluster.distance(point)
|
||||
if d < best:
|
||||
best = d
|
||||
ind = i
|
||||
clusters[ind].append(point)
|
||||
progress = False
|
||||
for cluster in clusters:
|
||||
res = cluster.calc_new_centroid()
|
||||
if res:
|
||||
progress = True
|
||||
if not progress:
|
||||
break
|
||||
|
||||
|
||||
def load_file(filepath: str):
|
||||
points = list()
|
||||
with open(filepath, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
point = list(map(int, line.split()))
|
||||
points.append(point)
|
||||
return points
|
||||
|
||||
|
||||
def draw_raw_points(points):
|
||||
if len(points[0]) > 2:
|
||||
pass
|
||||
else:
|
||||
plt.scatter(*zip(*points))
|
||||
plt.show()
|
||||
|
||||
|
||||
def main(dimension: str):
|
||||
if dimension.lower() == '2d':
|
||||
number_of_clusters = 15
|
||||
dim = 2
|
||||
random_range = int(1e6)
|
||||
points = load_file("./s1.txt")
|
||||
elif dimension.lower() == '9d':
|
||||
number_of_clusters = 2
|
||||
dim = 9
|
||||
random_range = int(10)
|
||||
points = load_file("./breast.txt")
|
||||
else:
|
||||
raise ValueError('dimension must be 2d or 9d')
|
||||
|
||||
clusters = generate_clusters(number_of_clusters, dim, random_range)
|
||||
|
||||
k_mean(points, clusters)
|
||||
|
||||
if dimension.lower() == '9d':
|
||||
fig1 = plt.figure(1)
|
||||
ax1 = fig1.add_subplot(projection='3d')
|
||||
fig2 = plt.figure(2)
|
||||
ax2 = fig2.add_subplot(projection='3d')
|
||||
fig3 = plt.figure(3)
|
||||
ax3 = fig3.add_subplot(projection='3d')
|
||||
for cluster in clusters:
|
||||
cluster.draw(ax1, ax2, ax3)
|
||||
else:
|
||||
for cluster in clusters:
|
||||
cluster.draw()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
os.chdir(WORKDIR)
|
||||
main('2d')
|
||||
main('9d')
|
Loading…
Reference in New Issue
Block a user