from conllu import parse_incr from flair.data import Corpus from flair.embeddings import StackedEmbeddings from flair.embeddings import WordEmbeddings from flair.embeddings import CharacterEmbeddings from flair.embeddings import FlairEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer from nlu_utils import conllu2flair, nolabel2o import torch if torch.cuda.is_available(): torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def train_model(label_type, field_parsers = {}): with open('data/train_dialog.conllu', encoding='utf-8') as f: trainset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers)) with open('data/test_dialog_46.conllu', encoding='utf-8') as f: testset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers)) breakpoint() corpus = Corpus(train=conllu2flair(trainset, label_type), test=conllu2flair(testset, label_type)) label_dictionary = corpus.make_label_dictionary(label_type=label_type) embedding_types = [ WordEmbeddings('pl'), FlairEmbeddings('pl-forward'), FlairEmbeddings('pl-backward'), CharacterEmbeddings(), ] embeddings = StackedEmbeddings(embeddings=embedding_types) tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=label_dictionary, tag_type=label_type, use_crf=True, tag_format="BIO") frame_trainer = ModelTrainer(tagger, corpus) frame_trainer.train(f'{label_type}-model', learning_rate=0.1, mini_batch_size=16, max_epochs=75, train_with_dev=False) if __name__ == '__main__': train_model("frame") train_model('slot', field_parsers={'slot': nolabel2o})