feature/load-dataset #2
@ -31,12 +31,12 @@ class Dataset:
|
|||||||
self.shuffle_buffer_size = shuffle_buffer_size
|
self.shuffle_buffer_size = shuffle_buffer_size
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
|
|
||||||
self.dataset = self._load_dataset()\
|
self.dataset = self.__load_dataset()\
|
||||||
.shuffle(self.shuffle_buffer_size, seed=self.seed)\
|
.shuffle(self.shuffle_buffer_size, seed=self.seed)\
|
||||||
.repeat(self.repeat)\
|
.repeat(self.repeat)\
|
||||||
.prefetch(tf.data.experimental.AUTOTUNE)
|
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||||
|
|
||||||
def _load_dataset(self) -> tf.data.Dataset:
|
def __load_dataset(self) -> tf.data.Dataset:
|
||||||
# check if path has 'test' word in it
|
# check if path has 'test' word in it
|
||||||
dataset = tf.data.Dataset.list_files(str(self.data_dir / '*/*'))
|
dataset = tf.data.Dataset.list_files(str(self.data_dir / '*/*'))
|
||||||
if 'test' in str(self.data_dir).lower():
|
if 'test' in str(self.data_dir).lower():
|
||||||
@ -44,11 +44,11 @@ class Dataset:
|
|||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
dataset = dataset.map(
|
dataset = dataset.map(
|
||||||
self._preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
self.__preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||||
|
|
||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
def _get_labels(self, image_path):
|
def __get_labels(self, image_path):
|
||||||
path = tf.strings.split(image_path, os.path.sep)[-2]
|
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||||
plant = tf.strings.split(path, '___')[0]
|
plant = tf.strings.split(path, '___')[0]
|
||||||
disease = tf.strings.split(path, '___')[1]
|
disease = tf.strings.split(path, '___')[1]
|
||||||
@ -58,14 +58,14 @@ class Dataset:
|
|||||||
|
|
||||||
return tf.cast(one_hot_plant, dtype=tf.uint8, name=None), tf.cast(one_hot_disease, dtype=tf.uint8, name=None)
|
return tf.cast(one_hot_plant, dtype=tf.uint8, name=None), tf.cast(one_hot_disease, dtype=tf.uint8, name=None)
|
||||||
|
|
||||||
def _get_image(self, image_path):
|
def __get_image(self, image_path):
|
||||||
img = tf.io.read_file(image_path)
|
img = tf.io.read_file(image_path)
|
||||||
img = tf.io.decode_jpeg(img, channels=3)
|
img = tf.io.decode_jpeg(img, channels=3)
|
||||||
return tf.cast(img, dtype=tf.float32, name=None) / 255.
|
return tf.cast(img, dtype=tf.float32, name=None) / 255.
|
||||||
|
|
||||||
def _preprocess(self, image_path):
|
def __preprocess(self, image_path):
|
||||||
labels = self._get_labels(image_path)
|
labels = self.__get_labels(image_path)
|
||||||
image = self._get_image(image_path)
|
image = self.__get_image(image_path)
|
||||||
|
|
||||||
# returns X, Y1, Y2
|
# returns X, Y1, Y2
|
||||||
return image, labels[0], labels[1]
|
return image, labels[0], labels[1]
|
||||||
|
Loading…
Reference in New Issue
Block a user