Merge branch 'master' of https://git.wmi.amu.edu.pl/tdwojak/Python2017
# Conflicts: # labs02/test_task.py
This commit is contained in:
parent
a6c2e3af77
commit
8b57f5b1cf
@ -28,7 +28,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"slideshow": {
|
||||
@ -299,30 +299,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"count 26.000000\n",
|
||||
"mean 8.576923\n",
|
||||
"std 5.375300\n",
|
||||
"min 1.000000\n",
|
||||
"25% 4.250000\n",
|
||||
"50% 8.000000\n",
|
||||
"75% 12.000000\n",
|
||||
"max 18.000000\n",
|
||||
"dtype: float64\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(dane.describe())"
|
||||
]
|
||||
|
@ -1,14 +1,15 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
import pandas as pd
|
||||
|
||||
def wczytaj_dane():
|
||||
pass
|
||||
return pd.read_csv('mieszkania.csv')
|
||||
|
||||
def most_common_room_number(dane):
|
||||
pass
|
||||
return dane['Rooms'].mode()[0]
|
||||
|
||||
def cheapest_flats(dane, n):
|
||||
pass
|
||||
return dane.sort_values(by=[u'Expected'], na_position='last').head(n)
|
||||
|
||||
def find_borough(desc):
|
||||
dzielnice = ['Stare Miasto',
|
||||
@ -19,23 +20,54 @@ def find_borough(desc):
|
||||
'Winogrady',
|
||||
'Miłostowo',
|
||||
'Dębiec']
|
||||
pass
|
||||
histogram = {districtName: desc.find(districtName) for districtName in dzielnice if desc.find(districtName) != -1}
|
||||
return 'Inne' if not histogram else min(histogram, key=histogram.get)
|
||||
|
||||
|
||||
def add_borough(dane):
|
||||
pass
|
||||
dane['Borough'] = dane.apply( lambda row: find_borough( row['Location']), axis = 1)
|
||||
|
||||
def write_plot(dane, filename):
|
||||
pass
|
||||
dane['Borough'].value_counts().plot.bar().get_figure().savefig(filename)
|
||||
|
||||
def mean_price(dane, room_number):
|
||||
pass
|
||||
return dane.loc[ dane['Rooms'] == room_number ].mean()[1]
|
||||
|
||||
def find_13(dane):
|
||||
pass
|
||||
return dane.loc[dane['Floor'] == 13]['Borough'].unique()
|
||||
|
||||
def find_best_flats(dane):
|
||||
pass
|
||||
return dane.loc[(dane['Borough'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)]
|
||||
|
||||
def predict(dane, col_name):
|
||||
from sklearn import linear_model
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
d_X = pd.DataFrame(dane[col_name])
|
||||
print('Dane z kolumny ', col_name)
|
||||
print(d_X.head())
|
||||
d_X_train = d_X[4000:]
|
||||
d_X_test = d_X[:4000]
|
||||
d_y = pd.DataFrame(dane['Expected'])
|
||||
d_y_train = d_y[4000:]
|
||||
d_y_test = d_y[:4000]
|
||||
regr = linear_model.LinearRegression()
|
||||
regr.fit(d_X_train, d_y_train)
|
||||
y_pred = regr.predict(d_X_test)
|
||||
print('MODEL(%s): pred_y = %f * x + %f' % (col_name, regr.coef_[0], regr.intercept_) )
|
||||
print('Mean squared error: %.2f' % mean_squared_error(d_y_test, y_pred))
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.clf()
|
||||
dataLine, = plt.plot(d_X_test, d_y_test, 'ro', label='collected data')
|
||||
predLine, = plt.plot(d_X_test, y_pred, color='blue', linestyle='--', linewidth = 2, label='predictions')
|
||||
ax = plt.gca().add_artist(plt.legend(handles=[dataLine], loc=1))
|
||||
plt.legend(handles=[predLine], loc=4)
|
||||
plt.xticks(())
|
||||
plt.yticks(())
|
||||
plt.xlabel(col_name)
|
||||
plt.ylabel('Price')
|
||||
plt.show()
|
||||
|
||||
def main():
|
||||
dane = wczytaj_dane()
|
||||
@ -44,11 +76,44 @@ def main():
|
||||
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
||||
.format(most_common_room_number(dane)))
|
||||
|
||||
print("{} to najłądniejsza dzielnica w Poznaniu."
|
||||
.format(find_borough("Grunwald i Jeżyce"))))
|
||||
print("7 najtańszych mieszkań to: ")
|
||||
print(cheapest_flats(dane, 7))
|
||||
|
||||
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
||||
.format(mean_price(dane, 3)))
|
||||
print("{} to najłądniejsza dzielnica w Poznaniu.".format(find_borough("Grunwald i Jeżyce")))
|
||||
|
||||
add_borough(dane)
|
||||
write_plot(dane, 'tmp_borough_hist.png')
|
||||
for i in dane['Rooms'].unique():
|
||||
print("Średnia cena mieszkania {}-pokojowego, to: {}".format(i, mean_price(dane, i)))
|
||||
print('Dzielnice z mieszkaniami na 13 piętrze: {}'.format(find_13(dane)))
|
||||
print('"Najlepsze" mieszkania: ')
|
||||
print(find_best_flats(dane))
|
||||
|
||||
predict(dane, 'Rooms')
|
||||
predict(dane, 'SqrMeters')
|
||||
|
||||
|
||||
from sklearn import datasets, linear_model
|
||||
import numbers as np
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
|
||||
|
||||
|
||||
|
||||
#
|
||||
# diabetes = datasets.load_diabetes()
|
||||
# diabetes_X = diabetes.data[:, None, 3]
|
||||
# diabetes_X_train = diabetes_X[:-20]
|
||||
# diabetes_X_test = diabetes_X[-20:]
|
||||
# diabetes_y_train = diabetes.target[:-20]
|
||||
# diabetes_y_test = diabetes.target[-20:]
|
||||
# regr = linear_model.LinearRegression()
|
||||
# regr.fit(diabetes_X_train, diabetes_y_train)
|
||||
# diabetes_y_pred = regr.predict(diabetes_X_test)
|
||||
# print('Coefficients: \n', regr.coef_)
|
||||
# print('Mean squared error: %.2f' % mean_squared_error(diabetes_y_test, diabetes_y_pred))
|
||||
#
|
||||
# print( diabetes.data[:, None, 3].shape )
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user