labs04 z1
This commit is contained in:
parent
ad880b3674
commit
e69a13c79a
@ -1,23 +1,27 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
def wczytaj_dane():
|
def wczytaj_dane():
|
||||||
my_data = pd.read_csv('mieszkania.csv',
|
my_data = pd.read_csv('mieszkania.csv',
|
||||||
encoding='utf-8',
|
encoding='utf-8',
|
||||||
index_col='Id')
|
index_col='Id',
|
||||||
|
sep = ',')
|
||||||
return my_data
|
return my_data
|
||||||
#print(my_data)
|
#print(my_data)
|
||||||
|
|
||||||
def most_common_room_number(dane):
|
def most_common_room_number(dane):
|
||||||
room_num = dane['Rooms']
|
rooms = dane['Rooms']
|
||||||
room_num_rank = room_num.value_counts()
|
rooms_max = rooms.value_counts().index[0]
|
||||||
room_num_list = list(room_num_rank)
|
return rooms_max
|
||||||
return type(room_num_rank)
|
|
||||||
#return ( room_num_list[room_num_list.index(max(room_num_list))] )
|
#return ( room_num_list[room_num_list.index(max(room_num_list))] )
|
||||||
#pass
|
#pass
|
||||||
def cheapest_flats(dane, n):
|
def cheapest_flats(dane, n):
|
||||||
pass
|
expected = dane['Expected']
|
||||||
|
n_cheapest = expected.sort_values().head(n)
|
||||||
|
return n_cheapest
|
||||||
|
|
||||||
def find_borough(desc):
|
def find_borough(desc):
|
||||||
dzielnice = ['Stare Miasto',
|
dzielnice = ['Stare Miasto',
|
||||||
@ -28,23 +32,27 @@ def find_borough(desc):
|
|||||||
'Winogrady',
|
'Winogrady',
|
||||||
'Miłostowo',
|
'Miłostowo',
|
||||||
'Dębiec']
|
'Dębiec']
|
||||||
pass
|
for dzielnica in dzielnice:
|
||||||
|
if dzielnica in desc:
|
||||||
|
return dzielnica
|
||||||
|
return 'Inne'
|
||||||
|
|
||||||
def add_borough(dane):
|
def add_borough(dane):
|
||||||
pass
|
dane['Borough'] = dane.apply(lambda row: find_borough(row['Location']))
|
||||||
|
|
||||||
def write_plot(dane, filename):
|
def write_plot(dane, filename):
|
||||||
pass
|
dane['Borough'].value_counts().plot.bar().get_figure().savefig(filename)
|
||||||
|
|
||||||
def mean_price(dane, room_number):
|
def mean_price(dane, room_number):
|
||||||
pass
|
mean_value = dane.loc[dane['Rooms'] == room_number]['Expected'].mean()
|
||||||
|
return mean_value
|
||||||
|
|
||||||
def find_13(dane):
|
def find_13(dane):
|
||||||
pass
|
return dane.loc[dane['Floor'] == 13]['Borough'].unique()
|
||||||
|
|
||||||
def find_best_flats(dane):
|
def find_best_flats(dane):
|
||||||
pass
|
best_flats = dane.loc[(df['Borough'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)]
|
||||||
|
return best_flats
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
dane = wczytaj_dane()
|
dane = wczytaj_dane()
|
||||||
|
Loading…
Reference in New Issue
Block a user