#!/usr/bin/env python # -*- coding: utf-8 -*- def wczytaj_dane(): import pandas as pd dane = pd.read_csv("labs06/mieszkania.csv") dane.head() def most_common_room_number(dane): dane['Rooms'].value_counts().idxmax() def cheapest_flats(dane, n): p = dane.sort_values(['Expected'], ascending=[0]) p.head(7) def find_borough(desc): dzielnice = ['Stare Miasto', 'Wilda', 'Jeżyce', 'Rataje', 'Piątkowo', 'Winogrady', 'Miłostowo', 'Dębiec'] pass def add_borough(dane): pass def write_plot(dane, filename): pass def mean_price(dane, room_number): p1 = dane[dane['Rooms'] == 2] p2 = p1['Expected'] p2.mean() def find_13(dane): p1 = dane[dane['Floor'] == 13] p1.Location.unique() def find_best_flats(dane): p_index = dane['Location'].str.contains('Winogrady') p = dane[p_index] p[(p['Rooms'] == 3) & (p['Floor'] == 1)] def main(): dane = wczytaj_dane() print(dane[:5]) print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" .format(most_common_room_number(dane))) print("{} to najłądniejsza dzielnica w Poznaniu." .format(find_borough("Grunwald i Jeżyce")))) print("Średnia cena mieszkania 3-pokojowego, to: {}" .format(mean_price(dane, 3))) if __name__ == "__main__": main()