From be0e247d2f0d11fe9b94ddb59e2e580e398cbc05 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tomasz=20Zi=C4=99tkiewicz?= Date: Wed, 26 May 2021 21:26:06 +0200 Subject: [PATCH] MLflow in Docker on Jenkins --- Dockerfile | 5 +++ Jenkinsfile | 17 +++++++++ train.py | 99 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 121 insertions(+) create mode 100644 Dockerfile create mode 100644 Jenkinsfile create mode 100644 train.py diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000..db6e42f --- /dev/null +++ b/Dockerfile @@ -0,0 +1,5 @@ +FROM ubuntu:20.04 + +RUN apt update +RUN apt install -y python3 python3-pip +RUN pip install mlflow diff --git a/Jenkinsfile b/Jenkinsfile new file mode 100644 index 0000000..b09102c --- /dev/null +++ b/Jenkinsfile @@ -0,0 +1,17 @@ +node { + def img + stage('Preparation') { // for display purposes + img = docker.build('ium-helloworld') + } + stage('Train') { + img.inside('-v /tmp/mlruns:/tmp/mlruns -v /mlruns:/mlruns ') { + sh 'ls -l /tmp/mlruns' + sh 'ls -l /mlruns' + sh './train.py' + sh 'ls -l /tmp/mlruns' + sh 'ls -l /mlruns' + } + } + +} + diff --git a/train.py b/train.py new file mode 100644 index 0000000..673fed3 --- /dev/null +++ b/train.py @@ -0,0 +1,99 @@ +# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality +# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. +# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. + +import os +import warnings +import sys + +import pandas as pd +import numpy as np +from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score +from sklearn.model_selection import train_test_split +from sklearn.linear_model import ElasticNet +from urllib.parse import urlparse +import mlflow +import mlflow.sklearn + +import logging + +logging.basicConfig(level=logging.WARN) +logger = logging.getLogger(__name__) + +mlflow.set_tracking_uri("http://localhost:5001") +mlflow.set_experiment("s123456") + +def eval_metrics(actual, pred): + rmse = np.sqrt(mean_squared_error(actual, pred)) + mae = mean_absolute_error(actual, pred) + r2 = r2_score(actual, pred) + return rmse, mae, r2 + + +if __name__ == "__main__": + warnings.filterwarnings("ignore") + np.random.seed(40) + + # Read the wine-quality csv file from the URL + csv_url = ( + "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv" + ) + try: + data = pd.read_csv(csv_url, sep=";") + except Exception as e: + logger.exception( + "Unable to download training & test CSV, check your internet connection. Error: %s", e + ) + + # Split the data into training and test sets. (0.75, 0.25) split. + train, test = train_test_split(data) + + # The predicted column is "quality" which is a scalar from [3, 9] + train_x = train.drop(["quality"], axis=1) + test_x = test.drop(["quality"], axis=1) + train_y = train[["quality"]] + test_y = test[["quality"]] + + + alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5 + #alpha = 0.5 + l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5 + #l1_ratio = 0.5 + + with mlflow.start_run() as run: + print("MLflow run experiment_id: {0}".format(run.info.experiment_id)) + print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri)) + + lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) + lr.fit(train_x, train_y) + + predicted_qualities = lr.predict(test_x) + + (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities) + + print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio)) + print(" RMSE: %s" % rmse) + print(" MAE: %s" % mae) + print(" R2: %s" % r2) + + mlflow.log_param("alpha", alpha) + mlflow.log_param("l1_ratio", l1_ratio) + mlflow.log_metric("rmse", rmse) + mlflow.log_metric("r2", r2) + mlflow.log_metric("mae", mae) + + # Infer model signature to log it + signature = mlflow.models.signature.infer_signature(train_x, lr.predict(train_x)) + + tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme + + # Model registry does not work with file store + if tracking_url_type_store != "file": + + # Register the model + # There are other ways to use the Model Registry, which depends on the use case, + # please refer to the doc for more information: + # https://mlflow.org/docs/latest/model-registry.html#api-workflow + mlflow.sklearn.log_model(lr, "wines-model", registered_model_name="ElasticnetWineModel", signature=signature) + else: + mlflow.sklearn.log_model(lr, "model", signature=signature)