Merge pull request 'master' (#37) from tzietkiewicz/aitech-ium:master into master

Reviewed-on: #37
This commit is contained in:
Tomasz Zietkiewicz 2023-03-15 13:46:44 +01:00
commit 4bb431da57
2 changed files with 540 additions and 85 deletions

View File

@ -211,11 +211,26 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Pobranie danych"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Pobieranie z Kaggle"
]
},
{
"cell_type": "code",
"execution_count": 1,
@ -231,29 +246,32 @@
"output_type": "stream",
"text": [
"Collecting kaggle\n",
" Using cached kaggle-1.5.12.tar.gz (58 kB)\n",
"Requirement already satisfied: six>=1.10 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.15.0)\n",
"Requirement already satisfied: certifi in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2021.5.30)\n",
"Requirement already satisfied: python-dateutil in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.8.1)\n",
"Requirement already satisfied: requests in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.25.1)\n",
"Requirement already satisfied: tqdm in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (4.59.0)\n",
"Requirement already satisfied: python-slugify in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (5.0.2)\n",
"Requirement already satisfied: urllib3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.26.4)\n",
"Requirement already satisfied: text-unidecode>=1.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-slugify->kaggle) (1.3)\n",
"Requirement already satisfied: idna<3,>=2.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (2.10)\n",
"Requirement already satisfied: chardet<5,>=3.0.2 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (4.0.0)\n",
" Downloading kaggle-1.5.13.tar.gz (63 kB)\n",
"\u001b[K |████████████████████████████████| 63 kB 558 kB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: six>=1.10 in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.16.0)\n",
"Requirement already satisfied: certifi in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2022.12.7)\n",
"Requirement already satisfied: python-dateutil in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.8.2)\n",
"Requirement already satisfied: requests in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.27.1)\n",
"Requirement already satisfied: tqdm in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (4.64.0)\n",
"Collecting python-slugify\n",
" Downloading python_slugify-8.0.1-py2.py3-none-any.whl (9.7 kB)\n",
"Requirement already satisfied: urllib3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.26.9)\n",
"Collecting text-unidecode>=1.3\n",
" Using cached text_unidecode-1.3-py2.py3-none-any.whl (78 kB)\n",
"Requirement already satisfied: idna<4,>=2.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (3.3)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (2.0.4)\n",
"Building wheels for collected packages: kaggle\n",
" Building wheel for kaggle (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for kaggle: filename=kaggle-1.5.12-py3-none-any.whl size=73053 sha256=1e6240d540651324d97a9772ad1ced30da7d7b5dc5956dc974eeeddf7c48844b\n",
" Stored in directory: /home/tomek/.cache/pip/wheels/ac/b2/c3/fa4706d469b5879105991d1c8be9a3c2ef329ba9fe2ce5085e\n",
"\u001b[?25h Created wheel for kaggle: filename=kaggle-1.5.13-py3-none-any.whl size=77733 sha256=83eee49596c7c76816c3bb9e8ffc0763b25e336457881b9790b9620548ae7297\n",
" Stored in directory: /home/tomek/.cache/pip/wheels/9c/45/15/6d6d116cd2539fb8f450d64b0aee4a480e5366bb11b42ac763\n",
"Successfully built kaggle\n",
"Installing collected packages: kaggle\n",
"Successfully installed kaggle-1.5.12\n",
"Requirement already satisfied: pandas in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (1.2.4)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.1)\n",
"Requirement already satisfied: numpy>=1.16.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.20.2)\n",
"Requirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2021.1)\n",
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n"
"Installing collected packages: text-unidecode, python-slugify, kaggle\n",
"Successfully installed kaggle-1.5.13 python-slugify-8.0.1 text-unidecode-1.3\n",
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (1.5.3)\n",
"Requirement already satisfied: numpy>=1.20.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.24.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2022.7.1)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.2)\n",
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
]
}
],
@ -265,7 +283,11 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
" - Pobierzemy zbiór Iris z Kaggle: https://www.kaggle.com/uciml/iris\n",
" - Licencja to \"Public Domain\", więc możemy z niego korzystać bez ograniczeń."
@ -273,7 +295,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "slide"
@ -284,9 +306,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading iris.zip to /home/tomek/AITech/repo/aitech-ium\n",
" 0%| | 0.00/3.60k [00:00<?, ?B/s]\n",
"100%|██████████████████████████████████████| 3.60k/3.60k [00:00<00:00, 1.63MB/s]\n"
"Downloading iris.zip to /home/tomek/repos/aitech-ium\r\n",
"\r",
" 0%| | 0.00/3.60k [00:00<?, ?B/s]\r\n",
"\r",
"100%|███████████████████████████████████████| 3.60k/3.60k [00:00<00:00, 438kB/s]\r\n"
]
}
],
@ -298,7 +322,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 8,
"metadata": {
"scrolled": true,
"slideshow": {
@ -339,68 +363,31 @@
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"metadata": {},
"source": [
"## Inspekcja\n",
"- Do inspekcji danych użyjemy popularnej biblioteki pythonowej Pandas: https://pandas.pydata.org/\n",
"- Do wizualizacji użyjemy biblioteki Seaborn: https://seaborn.pydata.org/index.html\n",
"- Służy ona do analizy i operowania na danych tabelarycznych jak i szeregach czasowych"
"### Podstawowa inspekcja za pomocą narzędzi Bash"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pandas in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (1.2.4)\n",
"Requirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2021.1)\n",
"Requirement already satisfied: numpy>=1.16.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.20.2)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.1)\n",
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n",
"Collecting seaborn\n",
" Downloading seaborn-0.11.2-py3-none-any.whl (292 kB)\n",
"\u001b[K |████████████████████████████████| 292 kB 1.1 MB/s eta 0:00:01\n",
"\u001b[?25hCollecting matplotlib>=2.2\n",
" Downloading matplotlib-3.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (11.2 MB)\n",
"\u001b[K |████████████████████████████████| 11.2 MB 10.8 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: pandas>=0.23 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.2.4)\n",
"Requirement already satisfied: numpy>=1.15 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.20.2)\n",
"Requirement already satisfied: scipy>=1.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.6.3)\n",
"Requirement already satisfied: packaging>=20.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (20.9)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (2.8.1)\n",
"Collecting cycler>=0.10\n",
" Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
"Requirement already satisfied: pyparsing>=2.2.1 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n",
"Collecting fonttools>=4.22.0\n",
" Downloading fonttools-4.30.0-py3-none-any.whl (898 kB)\n",
"\u001b[K |████████████████████████████████| 898 kB 4.9 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: pillow>=6.2.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (8.2.0)\n",
"Collecting kiwisolver>=1.0.1\n",
" Downloading kiwisolver-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
"\u001b[K |████████████████████████████████| 1.6 MB 7.7 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas>=0.23->seaborn) (2021.1)\n",
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.15.0)\n",
"Installing collected packages: kiwisolver, fonttools, cycler, matplotlib, seaborn\n",
"Successfully installed cycler-0.11.0 fonttools-4.30.0 kiwisolver-1.3.2 matplotlib-3.5.1 seaborn-0.11.2\n"
"151 Iris.csv\r\n"
]
}
],
"source": [
"!pip install --user pandas\n",
"!pip install --user seaborn"
"!wc -l Iris.csv"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "slide"
@ -423,9 +410,88 @@
"!head -n 5 Iris.csv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```less Iris.csv```"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Inspekcja\n",
"- Do inspekcji danych użyjemy popularnej biblioteki pythonowej Pandas: https://pandas.pydata.org/\n",
"- Do wizualizacji użyjemy biblioteki Seaborn: https://seaborn.pydata.org/index.html\n",
"- Służy ona do analizy i operowania na danych tabelarycznych jak i szeregach czasowych"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (1.5.3)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2022.7.1)\n",
"Requirement already satisfied: numpy>=1.20.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.24.2)\n",
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n",
"Collecting seaborn\n",
" Downloading seaborn-0.12.2-py3-none-any.whl (293 kB)\n",
"\u001b[K |████████████████████████████████| 293 kB 694 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting matplotlib!=3.6.1,>=3.1\n",
" Downloading matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)\n",
"\u001b[K |████████████████████████████████| 11.6 MB 253 kB/s eta 0:00:01 |██████▊ | 2.4 MB 396 kB/s eta 0:00:24\n",
"\u001b[?25hRequirement already satisfied: pandas>=0.25 in /home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.5.3)\n",
"Requirement already satisfied: numpy!=1.24.0,>=1.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.24.2)\n",
"Requirement already satisfied: packaging>=20.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.0)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)\n",
"Requirement already satisfied: importlib-resources>=3.2.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (5.12.0)\n",
"Collecting contourpy>=1.0.1\n",
" Downloading contourpy-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (299 kB)\n",
"\u001b[K |████████████████████████████████| 299 kB 613 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting pyparsing>=2.3.1\n",
" Using cached pyparsing-3.0.9-py3-none-any.whl (98 kB)\n",
"Collecting fonttools>=4.22.0\n",
" Downloading fonttools-4.39.0-py3-none-any.whl (1.0 MB)\n",
"\u001b[K |████████████████████████████████| 1.0 MB 556 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting cycler>=0.10\n",
" Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
"Collecting pillow>=6.2.0\n",
" Downloading Pillow-9.4.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)\n",
"\u001b[K |████████████████████████████████| 3.4 MB 664 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting kiwisolver>=1.0.1\n",
" Downloading kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
"\u001b[K |████████████████████████████████| 1.6 MB 1.0 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: zipp>=3.1.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib!=3.6.1,>=3.1->seaborn) (3.15.0)\n",
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas>=0.25->seaborn) (2022.7.1)\n",
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)\n",
"Installing collected packages: pyparsing, pillow, kiwisolver, fonttools, cycler, contourpy, matplotlib, seaborn\n",
"Successfully installed contourpy-1.0.7 cycler-0.11.0 fonttools-4.39.0 kiwisolver-1.4.4 matplotlib-3.7.1 pillow-9.4.0 pyparsing-3.0.9 seaborn-0.12.2\n"
]
}
],
"source": [
"!pip install --user pandas\n",
"!pip install --user seaborn"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"slideshow": {
"slide_type": "slide"
@ -596,7 +662,7 @@
"[150 rows x 6 columns]"
]
},
"execution_count": 5,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@ -1077,6 +1143,395 @@
"sns.pairplot(data=iris.drop(columns=[\"Id\"]), hue=\"Species\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Pobieranie z HuggingFace &#x1F917; Datasets\n",
" - Szukamy na https://huggingface.co/datasets/\n",
" - Klikamy w \"</> Use in datasets library\" i kopiujemy kod\n",
" - Instalujemy bibliotekę datasets"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting datasets\n",
" Downloading datasets-2.10.1-py3-none-any.whl (469 kB)\n",
"\u001b[K |████████████████████████████████| 469 kB 683 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting responses<0.19\n",
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
"Collecting xxhash\n",
" Downloading xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n",
"\u001b[K |████████████████████████████████| 212 kB 866 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting pyarrow>=6.0.0\n",
" Downloading pyarrow-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.9 MB)\n",
"\u001b[K |████████████████████████████████| 34.9 MB 956 kB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (1.24.2)\n",
"Requirement already satisfied: requests>=2.19.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (2.27.1)\n",
"Collecting aiohttp\n",
" Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
"\u001b[K |████████████████████████████████| 1.0 MB 859 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting pyyaml>=5.1\n",
" Downloading PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (661 kB)\n",
"\u001b[K |████████████████████████████████| 661 kB 857 kB/s eta 0:00:01\n",
"\u001b[?25hCollecting huggingface-hub<1.0.0,>=0.2.0\n",
" Downloading huggingface_hub-0.13.2-py3-none-any.whl (199 kB)\n",
"\u001b[K |████████████████████████████████| 199 kB 866 kB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: packaging in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (23.0)\n",
"Collecting multiprocess\n",
" Downloading multiprocess-0.70.14-py39-none-any.whl (132 kB)\n",
"\u001b[K |████████████████████████████████| 132 kB 1.0 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (4.64.0)\n",
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (1.5.3)\n",
"Collecting fsspec[http]>=2021.11.1\n",
" Downloading fsspec-2023.3.0-py3-none-any.whl (145 kB)\n",
"\u001b[K |████████████████████████████████| 145 kB 1.0 MB/s eta 0:00:01\n",
"\u001b[?25hCollecting dill<0.3.7,>=0.3.0\n",
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
"\u001b[K |████████████████████████████████| 110 kB 772 kB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from aiohttp->datasets) (22.2.0)\n",
"Collecting async-timeout<5.0,>=4.0.0a3\n",
" Using cached async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
"Collecting aiosignal>=1.1.2\n",
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
"Collecting yarl<2.0,>=1.0\n",
" Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n",
"\u001b[K |████████████████████████████████| 264 kB 1.1 MB/s eta 0:00:01\n",
"\u001b[?25hCollecting frozenlist>=1.1.1\n",
" Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n",
"\u001b[K |████████████████████████████████| 158 kB 1.2 MB/s eta 0:00:01\n",
"\u001b[?25hCollecting multidict<7.0,>=4.5\n",
" Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n",
"\u001b[K |████████████████████████████████| 114 kB 997 kB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: charset-normalizer<4.0,>=2.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from aiohttp->datasets) (2.0.4)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.5.0)\n",
"Collecting filelock\n",
" Downloading filelock-3.9.1-py3-none-any.whl (9.7 kB)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (1.26.9)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (2022.12.7)\n",
"Requirement already satisfied: idna<4,>=2.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (3.3)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas->datasets) (2022.7.1)\n",
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
"Installing collected packages: multidict, frozenlist, yarl, async-timeout, aiosignal, pyyaml, fsspec, filelock, dill, aiohttp, xxhash, responses, pyarrow, multiprocess, huggingface-hub, datasets\n",
"Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.10.1 dill-0.3.6 filelock-3.9.1 frozenlist-1.3.3 fsspec-2023.3.0 huggingface-hub-0.13.2 multidict-6.0.4 multiprocess-0.70.14 pyarrow-11.0.0 pyyaml-6.0 responses-0.18.0 xxhash-3.2.0 yarl-1.8.2\n"
]
}
],
"source": [
"#Instalujemy bibliotekę datasets\n",
"!python -m pip install datasets"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset csv (/home/tomek/.cache/huggingface/datasets/scikit-learn___csv/scikit-learn--iris-4e13227f45447466/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317)\n",
"100%|██████████| 1/1 [00:00<00:00, 268.64it/s]\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"iris_dataset = load_dataset(\"scikit-learn/iris\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species'],\n",
" num_rows: 150\n",
" })\n",
"})"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris_dataset"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species'],\n",
" num_rows: 150\n",
"})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris_dataset[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": false,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'Id': 1,\n",
" 'SepalLengthCm': 5.1,\n",
" 'SepalWidthCm': 3.5,\n",
" 'PetalLengthCm': 1.4,\n",
" 'PetalWidthCm': 0.2,\n",
" 'Species': 'Iris-setosa'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris_dataset[\"train\"][0]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Id</th>\n",
" <th>SepalLengthCm</th>\n",
" <th>SepalWidthCm</th>\n",
" <th>PetalLengthCm</th>\n",
" <th>PetalWidthCm</th>\n",
" <th>Species</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>5.1</td>\n",
" <td>3.5</td>\n",
" <td>1.4</td>\n",
" <td>0.2</td>\n",
" <td>Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>4.9</td>\n",
" <td>3.0</td>\n",
" <td>1.4</td>\n",
" <td>0.2</td>\n",
" <td>Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>4.7</td>\n",
" <td>3.2</td>\n",
" <td>1.3</td>\n",
" <td>0.2</td>\n",
" <td>Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>4.6</td>\n",
" <td>3.1</td>\n",
" <td>1.5</td>\n",
" <td>0.2</td>\n",
" <td>Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>5.0</td>\n",
" <td>3.6</td>\n",
" <td>1.4</td>\n",
" <td>0.2</td>\n",
" <td>Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>145</th>\n",
" <td>146</td>\n",
" <td>6.7</td>\n",
" <td>3.0</td>\n",
" <td>5.2</td>\n",
" <td>2.3</td>\n",
" <td>Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>146</th>\n",
" <td>147</td>\n",
" <td>6.3</td>\n",
" <td>2.5</td>\n",
" <td>5.0</td>\n",
" <td>1.9</td>\n",
" <td>Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>147</th>\n",
" <td>148</td>\n",
" <td>6.5</td>\n",
" <td>3.0</td>\n",
" <td>5.2</td>\n",
" <td>2.0</td>\n",
" <td>Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td>149</td>\n",
" <td>6.2</td>\n",
" <td>3.4</td>\n",
" <td>5.4</td>\n",
" <td>2.3</td>\n",
" <td>Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td>150</td>\n",
" <td>5.9</td>\n",
" <td>3.0</td>\n",
" <td>5.1</td>\n",
" <td>1.8</td>\n",
" <td>Iris-virginica</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>150 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm \\\n",
"0 1 5.1 3.5 1.4 0.2 \n",
"1 2 4.9 3.0 1.4 0.2 \n",
"2 3 4.7 3.2 1.3 0.2 \n",
"3 4 4.6 3.1 1.5 0.2 \n",
"4 5 5.0 3.6 1.4 0.2 \n",
".. ... ... ... ... ... \n",
"145 146 6.7 3.0 5.2 2.3 \n",
"146 147 6.3 2.5 5.0 1.9 \n",
"147 148 6.5 3.0 5.2 2.0 \n",
"148 149 6.2 3.4 5.4 2.3 \n",
"149 150 5.9 3.0 5.1 1.8 \n",
"\n",
" Species \n",
"0 Iris-setosa \n",
"1 Iris-setosa \n",
"2 Iris-setosa \n",
"3 Iris-setosa \n",
"4 Iris-setosa \n",
".. ... \n",
"145 Iris-virginica \n",
"146 Iris-virginica \n",
"147 Iris-virginica \n",
"148 Iris-virginica \n",
"149 Iris-virginica \n",
"\n",
"[150 rows x 6 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(iris_dataset[\"train\"])"
]
},
{
"cell_type": "markdown",
"metadata": {

View File

@ -12,7 +12,7 @@
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Inżynieria uczenia maszynowego </h1>\n",
"<h2> 3. <i>System ciągłej integracji na przykładzie Jenkins</i> [laboratoria]</h2> \n",
"<h3> Tomasz Ziętkiewicz (2022)</h3>\n",
"<h3> Tomasz Ziętkiewicz (2023)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
@ -104,7 +104,7 @@
" - **Job, aka. Pipleine (Projekt)** - podstawowa jednostka organizacji pracy wykonywanej przez Jenkinsa. \n",
" - Posiada swoją konfigurację, która określa jakie polecenia będą wykonywane w jego ramach. \n",
" - Jeden pipeline może być wykonany wiele razy, za każdym razem tworząc nowe *Zadanie* (*Build*). \n",
" Przykładowy pipeline: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/\n",
" Przykładowy pipeline: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/\n",
"<img src=\"IUM_03/pipeline.jpg\"/>\n"
]
},
@ -121,10 +121,10 @@
" - Unstable <img style=\"height: 30px;\" src=\"IUM_03/yellow.png\"/>\n",
" - Aborted <img style=\"height: 30px;\" src=\"IUM_03/aborted.png\"/>\n",
" - Failed <img style=\"height: 30px;\" src=\"IUM_03/red.png\"/>\n",
" Np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/2/\n",
" Np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/2/\n",
" - Śledzenie wyników działania buildu jak i debugowanie ewentualnych problemów ułatwiają:\n",
" - Wyjście z konsoli [(Console Output)](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/10/console) - tutaj widać logi wypisywane zarówno przez polecenia/funkcje Jenkinsowe jak i standardowe wyjście / wyjście błędów wykonywanych poleceń systemowych\n",
" - Workspace - to katalog roboczy, w którym uruchamiane są polecenia. Tutaj zostaje sklonowane repozytorium (jeśli je klonujemy), tu wywoływane będę polecenia systemowe. Można je przeglądać z poziomu przeglądarki, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/1/execution/node/3/ws/)\n",
" - Wyjście z konsoli [(Console Output)](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/10/console) - tutaj widać logi wypisywane zarówno przez polecenia/funkcje Jenkinsowe jak i standardowe wyjście / wyjście błędów wykonywanych poleceń systemowych\n",
" - Workspace - to katalog roboczy, w którym uruchamiane są polecenia. Tutaj zostaje sklonowane repozytorium (jeśli je klonujemy), tu wywoływane będę polecenia systemowe. Można je przeglądać z poziomu przeglądarki, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/1/execution/node/3/ws/)\n",
" - Każdy uruchomiony build można zatrzymać (abort) co powoduje zaprzestanie jego wykonywania\n",
" - Build zakończony można usunąć (np. jeśli przez przypadek wypisaliśmy na konsolę nasze hasło)"
]
@ -160,7 +160,7 @@
"source": [
"## Dokumentacja\n",
"- https://www.jenkins.io/doc/book/pipeline/\n",
"- \"Pipeline syntax\" na stronie każdego projektu, np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/pipeline-syntax/\n",
"- \"Pipeline syntax\" na stronie każdego projektu, np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/pipeline-syntax/\n",
"- Znaki zapytania <img style=\"height: 16px;\" src=\"IUM_03/help.png\"/> (W konfiguracji joba oraz w \"Pipeline Syntax\")"
]
},
@ -203,7 +203,7 @@
},
"source": [
"#### 1. Zaloguj się\n",
" - zaloguj się na https://tzietkiewicz.vm.wmi.amu.edu.pl:8080 za pomocą konta wydziałowego (jak w laboratoriach WMI)"
" - zaloguj się na https://tzietkiewicz.vm.wmi.amu.edu.pl:8081 za pomocą konta wydziałowego (jak w laboratoriach WMI)"
]
},
{
@ -240,7 +240,7 @@
"\n",
" - Pierwszy z nich daje większe możliwości, drugi jest łatwiejszy, lepiej udokumentowany, ale ma mniejszą siłę ekpresji.\n",
"\n",
" - Fragmenty kodu można również generować przy pomocy kreatora, dostępnego pod linkiem [Pipeline syntax](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/pipeline-syntax/) na stronie każdego projektu. Jest to bardzo przydatna funkcjonalność, nie tylko dla początkujących użytkowników\n",
" - Fragmenty kodu można również generować przy pomocy kreatora, dostępnego pod linkiem [Pipeline syntax](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/pipeline-syntax/) na stronie każdego projektu. Jest to bardzo przydatna funkcjonalność, nie tylko dla początkujących użytkowników\n",
"\n",
" - Jenkinsfile może być wprowadzony bezpośrednio z poziomu przeglądarki, albo pobrany z repozytorium.\n",
"\n",
@ -258,7 +258,7 @@
}
},
"source": [
"Przykładowy declarative Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/):\n",
"Przykładowy declarative Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/):\n",
"\n",
"```groovy\n",
"pipeline {\n",
@ -301,7 +301,7 @@
}
},
"source": [
"Przykładowy scripted Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/):\n",
"Przykładowy scripted Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/):\n",
"\n",
"```groovy\n",
"node {\n",
@ -396,13 +396,13 @@
"export KAGGLE_USERNAME=datadinosaur\n",
"export KAGGLE_KEY=xxxxxxxxxxxxxx\n",
" ```\n",
" - Jenkins natomiast umożliwia utworzenie parametru typu password, którego wartość nie jest nigdzie zapisywana (wartości pozostałych parametrów są zapisywane w zakładce \"Parameters\" każdego build-a, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/1/parameters/)\n",
" - Jenkins natomiast umożliwia utworzenie parametru typu password, którego wartość nie jest nigdzie zapisywana (wartości pozostałych parametrów są zapisywane w zakładce \"Parameters\" każdego build-a, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/1/parameters/)\n",
" - konstukcja `withEnv` w Jenkinsfile, pozwala wywołać wszystkie otoczone nią polecenia z wyeksportowanymi wartościami zmiennych systemowych. Pozwala to np. przekazać wartości parametrów zadania Jenkinsowego do shella (poleceń wywoływanych z `sh`). \n",
" - Zwróć jednak uwagę na to, w jaki sposób odwołujesz się do zmiennej z hasłem: https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#string-interpolation !\n",
" - ten sam rezultat co przy wykorzystaniu `withEnv` można by osiągnąć wywołując: `sh \"KAGGLE_USERNAME=${params.KAGGLE_USERNAME} KAGGLE_KEY=${params.KAGGLE_KEY} kaggle datasets list`, ale ten pierwszy wydahe się bardziej elegancki\n",
" - Poniżej przykładowy projekt, który pokazuje jak wywołać Kaggle CLI używając hasła podanego w parametrach zadania:\n",
" \n",
"https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/kaggle-CLI-example/\n",
"https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/kaggle-CLI-example/\n",
"```groovy\n",
"node {\n",
" stage('Preparation') { \n",
@ -509,7 +509,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
"version": "3.9.12"
},
"slideshow": {
"slide_type": "slide"