forked from tzietkiewicz/aitech-ium
Merge pull request 'master' (#37) from tzietkiewicz/aitech-ium:master into master
Reviewed-on: #37
This commit is contained in:
commit
4bb431da57
@ -211,11 +211,26 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Pobranie danych"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Pobieranie z Kaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
@ -231,29 +246,32 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Collecting kaggle\n",
|
||||
" Using cached kaggle-1.5.12.tar.gz (58 kB)\n",
|
||||
"Requirement already satisfied: six>=1.10 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.15.0)\n",
|
||||
"Requirement already satisfied: certifi in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2021.5.30)\n",
|
||||
"Requirement already satisfied: python-dateutil in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.8.1)\n",
|
||||
"Requirement already satisfied: requests in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.25.1)\n",
|
||||
"Requirement already satisfied: tqdm in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (4.59.0)\n",
|
||||
"Requirement already satisfied: python-slugify in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (5.0.2)\n",
|
||||
"Requirement already satisfied: urllib3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.26.4)\n",
|
||||
"Requirement already satisfied: text-unidecode>=1.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-slugify->kaggle) (1.3)\n",
|
||||
"Requirement already satisfied: idna<3,>=2.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (2.10)\n",
|
||||
"Requirement already satisfied: chardet<5,>=3.0.2 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (4.0.0)\n",
|
||||
" Downloading kaggle-1.5.13.tar.gz (63 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 63 kB 558 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: six>=1.10 in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.16.0)\n",
|
||||
"Requirement already satisfied: certifi in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2022.12.7)\n",
|
||||
"Requirement already satisfied: python-dateutil in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.8.2)\n",
|
||||
"Requirement already satisfied: requests in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (2.27.1)\n",
|
||||
"Requirement already satisfied: tqdm in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (4.64.0)\n",
|
||||
"Collecting python-slugify\n",
|
||||
" Downloading python_slugify-8.0.1-py2.py3-none-any.whl (9.7 kB)\n",
|
||||
"Requirement already satisfied: urllib3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from kaggle) (1.26.9)\n",
|
||||
"Collecting text-unidecode>=1.3\n",
|
||||
" Using cached text_unidecode-1.3-py2.py3-none-any.whl (78 kB)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (3.3)\n",
|
||||
"Requirement already satisfied: charset-normalizer~=2.0.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests->kaggle) (2.0.4)\n",
|
||||
"Building wheels for collected packages: kaggle\n",
|
||||
" Building wheel for kaggle (setup.py) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Created wheel for kaggle: filename=kaggle-1.5.12-py3-none-any.whl size=73053 sha256=1e6240d540651324d97a9772ad1ced30da7d7b5dc5956dc974eeeddf7c48844b\n",
|
||||
" Stored in directory: /home/tomek/.cache/pip/wheels/ac/b2/c3/fa4706d469b5879105991d1c8be9a3c2ef329ba9fe2ce5085e\n",
|
||||
"\u001b[?25h Created wheel for kaggle: filename=kaggle-1.5.13-py3-none-any.whl size=77733 sha256=83eee49596c7c76816c3bb9e8ffc0763b25e336457881b9790b9620548ae7297\n",
|
||||
" Stored in directory: /home/tomek/.cache/pip/wheels/9c/45/15/6d6d116cd2539fb8f450d64b0aee4a480e5366bb11b42ac763\n",
|
||||
"Successfully built kaggle\n",
|
||||
"Installing collected packages: kaggle\n",
|
||||
"Successfully installed kaggle-1.5.12\n",
|
||||
"Requirement already satisfied: pandas in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (1.2.4)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.7.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.1)\n",
|
||||
"Requirement already satisfied: numpy>=1.16.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.20.2)\n",
|
||||
"Requirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2021.1)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n"
|
||||
"Installing collected packages: text-unidecode, python-slugify, kaggle\n",
|
||||
"Successfully installed kaggle-1.5.13 python-slugify-8.0.1 text-unidecode-1.3\n",
|
||||
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (1.5.3)\n",
|
||||
"Requirement already satisfied: numpy>=1.20.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.24.2)\n",
|
||||
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2022.7.1)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.2)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -265,7 +283,11 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
" - Pobierzemy zbiór Iris z Kaggle: https://www.kaggle.com/uciml/iris\n",
|
||||
" - Licencja to \"Public Domain\", więc możemy z niego korzystać bez ograniczeń."
|
||||
@ -273,7 +295,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
@ -284,9 +306,11 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Downloading iris.zip to /home/tomek/AITech/repo/aitech-ium\n",
|
||||
" 0%| | 0.00/3.60k [00:00<?, ?B/s]\n",
|
||||
"100%|██████████████████████████████████████| 3.60k/3.60k [00:00<00:00, 1.63MB/s]\n"
|
||||
"Downloading iris.zip to /home/tomek/repos/aitech-ium\r\n",
|
||||
"\r",
|
||||
" 0%| | 0.00/3.60k [00:00<?, ?B/s]\r\n",
|
||||
"\r",
|
||||
"100%|███████████████████████████████████████| 3.60k/3.60k [00:00<00:00, 438kB/s]\r\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -298,7 +322,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"scrolled": true,
|
||||
"slideshow": {
|
||||
@ -339,68 +363,31 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Inspekcja\n",
|
||||
"- Do inspekcji danych użyjemy popularnej biblioteki pythonowej Pandas: https://pandas.pydata.org/\n",
|
||||
"- Do wizualizacji użyjemy biblioteki Seaborn: https://seaborn.pydata.org/index.html\n",
|
||||
"- Służy ona do analizy i operowania na danych tabelarycznych jak i szeregach czasowych"
|
||||
"### Podstawowa inspekcja za pomocą narzędzi Bash"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: pandas in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (1.2.4)\n",
|
||||
"Requirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2021.1)\n",
|
||||
"Requirement already satisfied: numpy>=1.16.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.20.2)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.7.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.1)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n",
|
||||
"Collecting seaborn\n",
|
||||
" Downloading seaborn-0.11.2-py3-none-any.whl (292 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 292 kB 1.1 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting matplotlib>=2.2\n",
|
||||
" Downloading matplotlib-3.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (11.2 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 11.2 MB 10.8 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: pandas>=0.23 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.2.4)\n",
|
||||
"Requirement already satisfied: numpy>=1.15 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.20.2)\n",
|
||||
"Requirement already satisfied: scipy>=1.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.6.3)\n",
|
||||
"Requirement already satisfied: packaging>=20.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (20.9)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.7 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (2.8.1)\n",
|
||||
"Collecting cycler>=0.10\n",
|
||||
" Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
|
||||
"Requirement already satisfied: pyparsing>=2.2.1 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n",
|
||||
"Collecting fonttools>=4.22.0\n",
|
||||
" Downloading fonttools-4.30.0-py3-none-any.whl (898 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 898 kB 4.9 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: pillow>=6.2.0 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib>=2.2->seaborn) (8.2.0)\n",
|
||||
"Collecting kiwisolver>=1.0.1\n",
|
||||
" Downloading kiwisolver-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 1.6 MB 7.7 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: pytz>=2017.3 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from pandas>=0.23->seaborn) (2021.1)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /media/tomek/Linux_data/home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.15.0)\n",
|
||||
"Installing collected packages: kiwisolver, fonttools, cycler, matplotlib, seaborn\n",
|
||||
"Successfully installed cycler-0.11.0 fonttools-4.30.0 kiwisolver-1.3.2 matplotlib-3.5.1 seaborn-0.11.2\n"
|
||||
"151 Iris.csv\r\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install --user pandas\n",
|
||||
"!pip install --user seaborn"
|
||||
"!wc -l Iris.csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
@ -423,9 +410,88 @@
|
||||
"!head -n 5 Iris.csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```less Iris.csv```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Inspekcja\n",
|
||||
"- Do inspekcji danych użyjemy popularnej biblioteki pythonowej Pandas: https://pandas.pydata.org/\n",
|
||||
"- Do wizualizacji użyjemy biblioteki Seaborn: https://seaborn.pydata.org/index.html\n",
|
||||
"- Służy ona do analizy i operowania na danych tabelarycznych jak i szeregach czasowych"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (1.5.3)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2.8.2)\n",
|
||||
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (2022.7.1)\n",
|
||||
"Requirement already satisfied: numpy>=1.20.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas) (1.24.2)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n",
|
||||
"Collecting seaborn\n",
|
||||
" Downloading seaborn-0.12.2-py3-none-any.whl (293 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 293 kB 694 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting matplotlib!=3.6.1,>=3.1\n",
|
||||
" Downloading matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 11.6 MB 253 kB/s eta 0:00:01 |██████▊ | 2.4 MB 396 kB/s eta 0:00:24\n",
|
||||
"\u001b[?25hRequirement already satisfied: pandas>=0.25 in /home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.5.3)\n",
|
||||
"Requirement already satisfied: numpy!=1.24.0,>=1.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from seaborn) (1.24.2)\n",
|
||||
"Requirement already satisfied: packaging>=20.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.0)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.7 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)\n",
|
||||
"Requirement already satisfied: importlib-resources>=3.2.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (5.12.0)\n",
|
||||
"Collecting contourpy>=1.0.1\n",
|
||||
" Downloading contourpy-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (299 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 299 kB 613 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting pyparsing>=2.3.1\n",
|
||||
" Using cached pyparsing-3.0.9-py3-none-any.whl (98 kB)\n",
|
||||
"Collecting fonttools>=4.22.0\n",
|
||||
" Downloading fonttools-4.39.0-py3-none-any.whl (1.0 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 1.0 MB 556 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting cycler>=0.10\n",
|
||||
" Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
|
||||
"Collecting pillow>=6.2.0\n",
|
||||
" Downloading Pillow-9.4.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 3.4 MB 664 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting kiwisolver>=1.0.1\n",
|
||||
" Downloading kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 1.6 MB 1.0 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: zipp>=3.1.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib!=3.6.1,>=3.1->seaborn) (3.15.0)\n",
|
||||
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas>=0.25->seaborn) (2022.7.1)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)\n",
|
||||
"Installing collected packages: pyparsing, pillow, kiwisolver, fonttools, cycler, contourpy, matplotlib, seaborn\n",
|
||||
"Successfully installed contourpy-1.0.7 cycler-0.11.0 fonttools-4.39.0 kiwisolver-1.4.4 matplotlib-3.7.1 pillow-9.4.0 pyparsing-3.0.9 seaborn-0.12.2\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install --user pandas\n",
|
||||
"!pip install --user seaborn"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
@ -596,7 +662,7 @@
|
||||
"[150 rows x 6 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -1077,6 +1143,395 @@
|
||||
"sns.pairplot(data=iris.drop(columns=[\"Id\"]), hue=\"Species\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Pobieranie z HuggingFace 🤗 Datasets\n",
|
||||
" - Szukamy na https://huggingface.co/datasets/\n",
|
||||
" - Klikamy w \"</> Use in datasets library\" i kopiujemy kod\n",
|
||||
" - Instalujemy bibliotekę datasets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Collecting datasets\n",
|
||||
" Downloading datasets-2.10.1-py3-none-any.whl (469 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 469 kB 683 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting responses<0.19\n",
|
||||
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
|
||||
"Collecting xxhash\n",
|
||||
" Downloading xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 212 kB 866 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting pyarrow>=6.0.0\n",
|
||||
" Downloading pyarrow-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.9 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 34.9 MB 956 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (1.24.2)\n",
|
||||
"Requirement already satisfied: requests>=2.19.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (2.27.1)\n",
|
||||
"Collecting aiohttp\n",
|
||||
" Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
|
||||
"\u001b[K |████████████████████████████████| 1.0 MB 859 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting pyyaml>=5.1\n",
|
||||
" Downloading PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (661 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 661 kB 857 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting huggingface-hub<1.0.0,>=0.2.0\n",
|
||||
" Downloading huggingface_hub-0.13.2-py3-none-any.whl (199 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 199 kB 866 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: packaging in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (23.0)\n",
|
||||
"Collecting multiprocess\n",
|
||||
" Downloading multiprocess-0.70.14-py39-none-any.whl (132 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 132 kB 1.0 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (4.64.0)\n",
|
||||
"Requirement already satisfied: pandas in /home/tomek/miniconda3/lib/python3.9/site-packages (from datasets) (1.5.3)\n",
|
||||
"Collecting fsspec[http]>=2021.11.1\n",
|
||||
" Downloading fsspec-2023.3.0-py3-none-any.whl (145 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 145 kB 1.0 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting dill<0.3.7,>=0.3.0\n",
|
||||
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 110 kB 772 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from aiohttp->datasets) (22.2.0)\n",
|
||||
"Collecting async-timeout<5.0,>=4.0.0a3\n",
|
||||
" Using cached async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
|
||||
"Collecting aiosignal>=1.1.2\n",
|
||||
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
|
||||
"Collecting yarl<2.0,>=1.0\n",
|
||||
" Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 264 kB 1.1 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting frozenlist>=1.1.1\n",
|
||||
" Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 158 kB 1.2 MB/s eta 0:00:01\n",
|
||||
"\u001b[?25hCollecting multidict<7.0,>=4.5\n",
|
||||
" Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 114 kB 997 kB/s eta 0:00:01\n",
|
||||
"\u001b[?25hRequirement already satisfied: charset-normalizer<4.0,>=2.0 in /home/tomek/miniconda3/lib/python3.9/site-packages (from aiohttp->datasets) (2.0.4)\n",
|
||||
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/tomek/miniconda3/lib/python3.9/site-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.5.0)\n",
|
||||
"Collecting filelock\n",
|
||||
" Downloading filelock-3.9.1-py3-none-any.whl (9.7 kB)\n",
|
||||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (1.26.9)\n",
|
||||
"Requirement already satisfied: certifi>=2017.4.17 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (2022.12.7)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from requests>=2.19.0->datasets) (3.3)\n",
|
||||
"Requirement already satisfied: python-dateutil>=2.8.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas->datasets) (2.8.2)\n",
|
||||
"Requirement already satisfied: pytz>=2020.1 in /home/tomek/miniconda3/lib/python3.9/site-packages (from pandas->datasets) (2022.7.1)\n",
|
||||
"Requirement already satisfied: six>=1.5 in /home/tomek/miniconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
|
||||
"Installing collected packages: multidict, frozenlist, yarl, async-timeout, aiosignal, pyyaml, fsspec, filelock, dill, aiohttp, xxhash, responses, pyarrow, multiprocess, huggingface-hub, datasets\n",
|
||||
"Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.10.1 dill-0.3.6 filelock-3.9.1 frozenlist-1.3.3 fsspec-2023.3.0 huggingface-hub-0.13.2 multidict-6.0.4 multiprocess-0.70.14 pyarrow-11.0.0 pyyaml-6.0 responses-0.18.0 xxhash-3.2.0 yarl-1.8.2\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Instalujemy bibliotekę datasets\n",
|
||||
"!python -m pip install datasets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found cached dataset csv (/home/tomek/.cache/huggingface/datasets/scikit-learn___csv/scikit-learn--iris-4e13227f45447466/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317)\n",
|
||||
"100%|██████████| 1/1 [00:00<00:00, 268.64it/s]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from datasets import load_dataset\n",
|
||||
"\n",
|
||||
"iris_dataset = load_dataset(\"scikit-learn/iris\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"DatasetDict({\n",
|
||||
" train: Dataset({\n",
|
||||
" features: ['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species'],\n",
|
||||
" num_rows: 150\n",
|
||||
" })\n",
|
||||
"})"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"iris_dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"scrolled": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Dataset({\n",
|
||||
" features: ['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species'],\n",
|
||||
" num_rows: 150\n",
|
||||
"})"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"iris_dataset[\"train\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"scrolled": false,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'Id': 1,\n",
|
||||
" 'SepalLengthCm': 5.1,\n",
|
||||
" 'SepalWidthCm': 3.5,\n",
|
||||
" 'PetalLengthCm': 1.4,\n",
|
||||
" 'PetalWidthCm': 0.2,\n",
|
||||
" 'Species': 'Iris-setosa'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"iris_dataset[\"train\"][0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"scrolled": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Id</th>\n",
|
||||
" <th>SepalLengthCm</th>\n",
|
||||
" <th>SepalWidthCm</th>\n",
|
||||
" <th>PetalLengthCm</th>\n",
|
||||
" <th>PetalWidthCm</th>\n",
|
||||
" <th>Species</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>5.1</td>\n",
|
||||
" <td>3.5</td>\n",
|
||||
" <td>1.4</td>\n",
|
||||
" <td>0.2</td>\n",
|
||||
" <td>Iris-setosa</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>4.9</td>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" <td>1.4</td>\n",
|
||||
" <td>0.2</td>\n",
|
||||
" <td>Iris-setosa</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>4.7</td>\n",
|
||||
" <td>3.2</td>\n",
|
||||
" <td>1.3</td>\n",
|
||||
" <td>0.2</td>\n",
|
||||
" <td>Iris-setosa</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>4.6</td>\n",
|
||||
" <td>3.1</td>\n",
|
||||
" <td>1.5</td>\n",
|
||||
" <td>0.2</td>\n",
|
||||
" <td>Iris-setosa</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>5.0</td>\n",
|
||||
" <td>3.6</td>\n",
|
||||
" <td>1.4</td>\n",
|
||||
" <td>0.2</td>\n",
|
||||
" <td>Iris-setosa</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>145</th>\n",
|
||||
" <td>146</td>\n",
|
||||
" <td>6.7</td>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" <td>5.2</td>\n",
|
||||
" <td>2.3</td>\n",
|
||||
" <td>Iris-virginica</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>146</th>\n",
|
||||
" <td>147</td>\n",
|
||||
" <td>6.3</td>\n",
|
||||
" <td>2.5</td>\n",
|
||||
" <td>5.0</td>\n",
|
||||
" <td>1.9</td>\n",
|
||||
" <td>Iris-virginica</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>147</th>\n",
|
||||
" <td>148</td>\n",
|
||||
" <td>6.5</td>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" <td>5.2</td>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>Iris-virginica</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>148</th>\n",
|
||||
" <td>149</td>\n",
|
||||
" <td>6.2</td>\n",
|
||||
" <td>3.4</td>\n",
|
||||
" <td>5.4</td>\n",
|
||||
" <td>2.3</td>\n",
|
||||
" <td>Iris-virginica</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>149</th>\n",
|
||||
" <td>150</td>\n",
|
||||
" <td>5.9</td>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" <td>5.1</td>\n",
|
||||
" <td>1.8</td>\n",
|
||||
" <td>Iris-virginica</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>150 rows × 6 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm \\\n",
|
||||
"0 1 5.1 3.5 1.4 0.2 \n",
|
||||
"1 2 4.9 3.0 1.4 0.2 \n",
|
||||
"2 3 4.7 3.2 1.3 0.2 \n",
|
||||
"3 4 4.6 3.1 1.5 0.2 \n",
|
||||
"4 5 5.0 3.6 1.4 0.2 \n",
|
||||
".. ... ... ... ... ... \n",
|
||||
"145 146 6.7 3.0 5.2 2.3 \n",
|
||||
"146 147 6.3 2.5 5.0 1.9 \n",
|
||||
"147 148 6.5 3.0 5.2 2.0 \n",
|
||||
"148 149 6.2 3.4 5.4 2.3 \n",
|
||||
"149 150 5.9 3.0 5.1 1.8 \n",
|
||||
"\n",
|
||||
" Species \n",
|
||||
"0 Iris-setosa \n",
|
||||
"1 Iris-setosa \n",
|
||||
"2 Iris-setosa \n",
|
||||
"3 Iris-setosa \n",
|
||||
"4 Iris-setosa \n",
|
||||
".. ... \n",
|
||||
"145 Iris-virginica \n",
|
||||
"146 Iris-virginica \n",
|
||||
"147 Iris-virginica \n",
|
||||
"148 Iris-virginica \n",
|
||||
"149 Iris-virginica \n",
|
||||
"\n",
|
||||
"[150 rows x 6 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pd.DataFrame(iris_dataset[\"train\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
|
@ -12,7 +12,7 @@
|
||||
"<div class=\"alert alert-block alert-info\">\n",
|
||||
"<h1> Inżynieria uczenia maszynowego </h1>\n",
|
||||
"<h2> 3. <i>System ciągłej integracji na przykładzie Jenkins</i> [laboratoria]</h2> \n",
|
||||
"<h3> Tomasz Ziętkiewicz (2022)</h3>\n",
|
||||
"<h3> Tomasz Ziętkiewicz (2023)</h3>\n",
|
||||
"</div>\n",
|
||||
"\n",
|
||||
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
|
||||
@ -104,7 +104,7 @@
|
||||
" - **Job, aka. Pipleine (Projekt)** - podstawowa jednostka organizacji pracy wykonywanej przez Jenkinsa. \n",
|
||||
" - Posiada swoją konfigurację, która określa jakie polecenia będą wykonywane w jego ramach. \n",
|
||||
" - Jeden pipeline może być wykonany wiele razy, za każdym razem tworząc nowe *Zadanie* (*Build*). \n",
|
||||
" Przykładowy pipeline: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/\n",
|
||||
" Przykładowy pipeline: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/\n",
|
||||
"<img src=\"IUM_03/pipeline.jpg\"/>\n"
|
||||
]
|
||||
},
|
||||
@ -121,10 +121,10 @@
|
||||
" - Unstable <img style=\"height: 30px;\" src=\"IUM_03/yellow.png\"/>\n",
|
||||
" - Aborted <img style=\"height: 30px;\" src=\"IUM_03/aborted.png\"/>\n",
|
||||
" - Failed <img style=\"height: 30px;\" src=\"IUM_03/red.png\"/>\n",
|
||||
" Np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/2/\n",
|
||||
" Np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/2/\n",
|
||||
" - Śledzenie wyników działania buildu jak i debugowanie ewentualnych problemów ułatwiają:\n",
|
||||
" - Wyjście z konsoli [(Console Output)](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/10/console) - tutaj widać logi wypisywane zarówno przez polecenia/funkcje Jenkinsowe jak i standardowe wyjście / wyjście błędów wykonywanych poleceń systemowych\n",
|
||||
" - Workspace - to katalog roboczy, w którym uruchamiane są polecenia. Tutaj zostaje sklonowane repozytorium (jeśli je klonujemy), tu wywoływane będę polecenia systemowe. Można je przeglądać z poziomu przeglądarki, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/1/execution/node/3/ws/)\n",
|
||||
" - Wyjście z konsoli [(Console Output)](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/10/console) - tutaj widać logi wypisywane zarówno przez polecenia/funkcje Jenkinsowe jak i standardowe wyjście / wyjście błędów wykonywanych poleceń systemowych\n",
|
||||
" - Workspace - to katalog roboczy, w którym uruchamiane są polecenia. Tutaj zostaje sklonowane repozytorium (jeśli je klonujemy), tu wywoływane będę polecenia systemowe. Można je przeglądać z poziomu przeglądarki, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/1/execution/node/3/ws/)\n",
|
||||
" - Każdy uruchomiony build można zatrzymać (abort) co powoduje zaprzestanie jego wykonywania\n",
|
||||
" - Build zakończony można usunąć (np. jeśli przez przypadek wypisaliśmy na konsolę nasze hasło)"
|
||||
]
|
||||
@ -160,7 +160,7 @@
|
||||
"source": [
|
||||
"## Dokumentacja\n",
|
||||
"- https://www.jenkins.io/doc/book/pipeline/\n",
|
||||
"- \"Pipeline syntax\" na stronie każdego projektu, np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/pipeline-syntax/\n",
|
||||
"- \"Pipeline syntax\" na stronie każdego projektu, np: https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/pipeline-syntax/\n",
|
||||
"- Znaki zapytania <img style=\"height: 16px;\" src=\"IUM_03/help.png\"/> (W konfiguracji joba oraz w \"Pipeline Syntax\")"
|
||||
]
|
||||
},
|
||||
@ -203,7 +203,7 @@
|
||||
},
|
||||
"source": [
|
||||
"#### 1. Zaloguj się\n",
|
||||
" - zaloguj się na https://tzietkiewicz.vm.wmi.amu.edu.pl:8080 za pomocą konta wydziałowego (jak w laboratoriach WMI)"
|
||||
" - zaloguj się na https://tzietkiewicz.vm.wmi.amu.edu.pl:8081 za pomocą konta wydziałowego (jak w laboratoriach WMI)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -240,7 +240,7 @@
|
||||
"\n",
|
||||
" - Pierwszy z nich daje większe możliwości, drugi jest łatwiejszy, lepiej udokumentowany, ale ma mniejszą siłę ekpresji.\n",
|
||||
"\n",
|
||||
" - Fragmenty kodu można również generować przy pomocy kreatora, dostępnego pod linkiem [Pipeline syntax](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/pipeline-syntax/) na stronie każdego projektu. Jest to bardzo przydatna funkcjonalność, nie tylko dla początkujących użytkowników\n",
|
||||
" - Fragmenty kodu można również generować przy pomocy kreatora, dostępnego pod linkiem [Pipeline syntax](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/pipeline-syntax/) na stronie każdego projektu. Jest to bardzo przydatna funkcjonalność, nie tylko dla początkujących użytkowników\n",
|
||||
"\n",
|
||||
" - Jenkinsfile może być wprowadzony bezpośrednio z poziomu przeglądarki, albo pobrany z repozytorium.\n",
|
||||
"\n",
|
||||
@ -258,7 +258,7 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Przykładowy declarative Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world/):\n",
|
||||
"Przykładowy declarative Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world/):\n",
|
||||
"\n",
|
||||
"```groovy\n",
|
||||
"pipeline {\n",
|
||||
@ -301,7 +301,7 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Przykładowy scripted Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/):\n",
|
||||
"Przykładowy scripted Pipeline (https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/):\n",
|
||||
"\n",
|
||||
"```groovy\n",
|
||||
"node {\n",
|
||||
@ -396,13 +396,13 @@
|
||||
"export KAGGLE_USERNAME=datadinosaur\n",
|
||||
"export KAGGLE_KEY=xxxxxxxxxxxxxx\n",
|
||||
" ```\n",
|
||||
" - Jenkins natomiast umożliwia utworzenie parametru typu password, którego wartość nie jest nigdzie zapisywana (wartości pozostałych parametrów są zapisywane w zakładce \"Parameters\" każdego build-a, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/hello-world-scripted/1/parameters/)\n",
|
||||
" - Jenkins natomiast umożliwia utworzenie parametru typu password, którego wartość nie jest nigdzie zapisywana (wartości pozostałych parametrów są zapisywane w zakładce \"Parameters\" każdego build-a, np. [tutaj](https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/hello-world-scripted/1/parameters/)\n",
|
||||
" - konstukcja `withEnv` w Jenkinsfile, pozwala wywołać wszystkie otoczone nią polecenia z wyeksportowanymi wartościami zmiennych systemowych. Pozwala to np. przekazać wartości parametrów zadania Jenkinsowego do shella (poleceń wywoływanych z `sh`). \n",
|
||||
" - Zwróć jednak uwagę na to, w jaki sposób odwołujesz się do zmiennej z hasłem: https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#string-interpolation !\n",
|
||||
" - ten sam rezultat co przy wykorzystaniu `withEnv` można by osiągnąć wywołując: `sh \"KAGGLE_USERNAME=${params.KAGGLE_USERNAME} KAGGLE_KEY=${params.KAGGLE_KEY} kaggle datasets list`, ale ten pierwszy wydahe się bardziej elegancki\n",
|
||||
" - Poniżej przykładowy projekt, który pokazuje jak wywołać Kaggle CLI używając hasła podanego w parametrach zadania:\n",
|
||||
" \n",
|
||||
"https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/kaggle-CLI-example/\n",
|
||||
"https://tzietkiewicz.vm.wmi.amu.edu.pl:8081/job/kaggle-CLI-example/\n",
|
||||
"```groovy\n",
|
||||
"node {\n",
|
||||
" stage('Preparation') { \n",
|
||||
@ -509,7 +509,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.9"
|
||||
"version": "3.9.12"
|
||||
},
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
|
Loading…
Reference in New Issue
Block a user