stud-ai/1-intro/1_tensor_tutorial.ipynb
2024-08-06 11:37:45 +02:00

648 lines
14 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"What is PyTorch?\n",
"================\n",
"\n",
"Its a Python-based scientific computing package targeted at two sets of\n",
"audiences:\n",
"\n",
"- A replacement for NumPy to use the power of GPUs\n",
"- a deep learning research platform that provides maximum flexibility\n",
" and speed\n",
"\n",
"Getting Started\n",
"---------------\n",
"\n",
"## Tensors\n",
"\n",
"Tensors are similar to NumPys ndarrays, with the addition being that\n",
"Tensors can also be used on a GPU to accelerate computing.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from __future__ import print_function\n",
"import torch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class=\"alert alert-info\"><h4>Note</h4><p>An uninitialized matrix is declared,\n",
" but does not contain definite known\n",
" values before it is used. When an\n",
" uninitialized matrix is created,\n",
" whatever values were in the allocated\n",
" memory at the time will appear as the initial values.</p></div>\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct a 5x3 matrix, uninitialized:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[6.3417e-36, 0.0000e+00, 6.3419e-36],\n",
" [0.0000e+00, 1.1210e-43, 0.0000e+00],\n",
" [1.5695e-43, 0.0000e+00, 0.0000e+00],\n",
" [0.0000e+00, 6.3917e+04, 4.5559e-41],\n",
" [3.1636e+15, 0.0000e+00, 1.8077e-43]])\n"
]
}
],
"source": [
"x = torch.empty(5, 3)\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct a randomly initialized matrix:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[0.6721, 0.7974, 0.8837],\n",
" [0.6526, 0.6741, 0.4159],\n",
" [0.7239, 0.8301, 0.9470],\n",
" [0.7420, 0.4967, 0.1845],\n",
" [0.2672, 0.3700, 0.3739]])\n"
]
}
],
"source": [
"x = torch.rand(5, 3)\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct a matrix filled zeros and of dtype long:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[0, 0, 0],\n",
" [0, 0, 0],\n",
" [0, 0, 0],\n",
" [0, 0, 0],\n",
" [0, 0, 0]])\n"
]
}
],
"source": [
"x = torch.zeros(5, 3, dtype=torch.long)\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct a tensor directly from data:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([5.5000, 3.0000])\n"
]
}
],
"source": [
"x = torch.tensor([5.5, 3])\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"or create a tensor based on an existing tensor. These methods\n",
"will reuse properties of the input tensor, e.g. dtype, unless\n",
"new values are provided by user\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1., 1., 1.],\n",
" [1., 1., 1.],\n",
" [1., 1., 1.],\n",
" [1., 1., 1.],\n",
" [1., 1., 1.]], dtype=torch.float64)\n",
"tensor([[ 1.8133, -2.0788, 0.1688],\n",
" [-0.8336, -0.9961, -0.2995],\n",
" [ 1.5661, -0.0205, -0.1414],\n",
" [-2.0433, 0.0211, 2.0895],\n",
" [ 0.2971, -0.2518, 0.5030]])\n"
]
}
],
"source": [
"x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes\n",
"print(x)\n",
"\n",
"x = torch.randn_like(x, dtype=torch.float) # override dtype!\n",
"print(x) # result has the same size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get its size:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([5, 3])\n"
]
}
],
"source": [
"print(x.size())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class=\"alert alert-info\"><h4>Note</h4><p>``torch.Size`` is in fact a tuple, so it supports all tuple operations.</p></div>\n",
"\n",
"## Operations\n",
"\n",
"There are multiple syntaxes for operations. In the following\n",
"example, we will take a look at the addition operation.\n",
"\n",
"Addition: syntax 1\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 2.4870, -1.1092, 0.2733],\n",
" [-0.5093, -0.1695, 0.1134],\n",
" [ 2.4207, 0.2844, 0.7987],\n",
" [-1.3298, 0.4374, 2.0926],\n",
" [ 1.1103, 0.2101, 1.2337]])\n"
]
}
],
"source": [
"y = torch.rand(5, 3)\n",
"print(x + y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Addition: syntax 2\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 0.0166, 1.8655, 0.2933],\n",
" [ 3.2162, 0.1241, 0.9112],\n",
" [ 1.4397, 0.8543, 0.4838],\n",
" [ 0.6985, 0.5795, 0.2113],\n",
" [ 0.7467, -0.7956, 0.6495]])\n"
]
}
],
"source": [
"print(torch.add(x, y))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Addition: providing an output tensor as argument\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 2.4870, -1.1092, 0.2733],\n",
" [-0.5093, -0.1695, 0.1134],\n",
" [ 2.4207, 0.2844, 0.7987],\n",
" [-1.3298, 0.4374, 2.0926],\n",
" [ 1.1103, 0.2101, 1.2337]])\n"
]
}
],
"source": [
"result = torch.empty(5, 3)\n",
"torch.add(x, y, out=result)\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Addition: in-place\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 0.0166, 1.8655, 0.2933],\n",
" [ 3.2162, 0.1241, 0.9112],\n",
" [ 1.4397, 0.8543, 0.4838],\n",
" [ 0.6985, 0.5795, 0.2113],\n",
" [ 0.7467, -0.7956, 0.6495]])\n"
]
}
],
"source": [
"# adds x to y\n",
"y.add_(x)\n",
"print(y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class=\"alert alert-info\"><h4>Note</h4><p>Any operation that mutates a tensor in-place is post-fixed with an ``_``.\n",
" For example: ``x.copy_(y)``, ``x.t_()``, will change ``x``.</p></div>\n",
"\n",
"You can use standard NumPy-like indexing with all bells and whistles!\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 1.3796, -0.6919, 0.7494, -0.1942, -1.0191])\n"
]
}
],
"source": [
"print(x[:, 1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Resizing: If you want to resize/reshape tensor, you can use ``torch.view``:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])\n"
]
}
],
"source": [
"x = torch.randn(4, 4)\n",
"y = x.view(16)\n",
"z = x.view(-1, 8) # the size -1 is inferred from other dimensions\n",
"print(x.size(), y.size(), z.size())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you have a one element tensor, use ``.item()`` to get the value as a\n",
"Python number\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([-0.0506])\n",
"-0.05061284825205803\n"
]
}
],
"source": [
"x = torch.randn(1)\n",
"print(x)\n",
"print(x.item())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Read later:**\n",
"\n",
"\n",
" 100+ Tensor operations, including transposing, indexing, slicing,\n",
" mathematical operations, linear algebra, random numbers, etc.,\n",
" are described\n",
" `here <https://pytorch.org/docs/torch>`_.\n",
"\n",
"NumPy Bridge\n",
"------------\n",
"\n",
"Converting a Torch Tensor to a NumPy array and vice versa is a breeze.\n",
"\n",
"The Torch Tensor and NumPy array will share their underlying memory\n",
"locations (if the Torch Tensor is on CPU), and changing one will change\n",
"the other.\n",
"\n",
"## Converting a Torch Tensor to a NumPy Array\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([1., 1., 1., 1., 1.])\n"
]
}
],
"source": [
"a = torch.ones(5)\n",
"print(a)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1. 1. 1. 1. 1.]\n"
]
}
],
"source": [
"b = a.numpy()\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See how the numpy array changed in value.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([2., 2., 2., 2., 2.])\n",
"[2. 2. 2. 2. 2.]\n"
]
}
],
"source": [
"a.add_(1)\n",
"print(a)\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Converting NumPy Array to Torch Tensor\n",
"See how changing the np array changed the Torch Tensor automatically\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2. 2. 2. 2. 2.]\n",
"tensor([2., 2., 2., 2., 2.], dtype=torch.float64)\n"
]
}
],
"source": [
"import numpy as np\n",
"a = np.ones(5)\n",
"b = torch.from_numpy(a)\n",
"np.add(a, 1, out=a)\n",
"print(a)\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All the Tensors on the CPU except a CharTensor support converting to\n",
"NumPy and back.\n",
"\n",
"CUDA Tensors\n",
"------------\n",
"\n",
"Tensors can be moved onto any device using the ``.to`` method.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.7.0\n",
"tensor([[ 1.3566, 1.3653, 1.4052, -0.1960],\n",
" [ 1.6845, 0.8119, 1.1873, -0.4534],\n",
" [ 1.6096, -1.4654, 1.7330, 2.0145],\n",
" [ 0.6571, 2.4976, 2.0423, 0.8646]], device='cuda:0')\n",
"tensor([[ 1.3566, 1.3653, 1.4052, -0.1960],\n",
" [ 1.6845, 0.8119, 1.1873, -0.4534],\n",
" [ 1.6096, -1.4654, 1.7330, 2.0145],\n",
" [ 0.6571, 2.4976, 2.0423, 0.8646]], dtype=torch.float64)\n"
]
}
],
"source": [
"# let us run this cell only if CUDA is available\n",
"# We will use ``torch.device`` objects to move tensors in and out of GPU\n",
"print(torch.__version__)\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\") # a CUDA device object\n",
" y = torch.ones_like(x, device=device) # directly create a tensor on GPU\n",
" x = x.to(device) # or just use strings ``.to(\"cuda\")``\n",
" z = x + y\n",
" print(z)\n",
" print(z.to(\"cpu\", torch.double)) # ``.to`` can also change dtype together!\n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 1
}