stud-ai/1-intro/5-allegro-data.ipynb
2024-08-06 11:37:45 +02:00

76 KiB
Raw Blame History

import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import os

transform = transforms.Compose(
    [  transforms.Resize(32),
     transforms.Pad(10, fill=255),
     transforms.CenterCrop((32, 32)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ]
)

def check_image(path):
    try:
        im = Image.open(path)
        im.verify()
        return True
        
    except:
        print(path)
        return False
    finally:
        im.close()

#transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) <-- this could part of the problem because supposedly 0.5 0.5 is used for grayscale images
trainset = torchvision.datasets.ImageFolder(root='../datasets/Damskie_mini/', transform=transform,is_valid_file = check_image)
testset = torchvision.datasets.ImageFolder(root='../datasets/Damskie_mini_test/', transform=transform,is_valid_file = check_image)
#, is_valid_file = check_image

trainloader = torch.utils.data.DataLoader(trainset, batch_size=16, shuffle=True, num_workers=12, drop_last=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=16, shuffle=True, num_workers=12, drop_last=True)
print("Done")
Done
import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

print(images[0].min())

# show images
imshow(torchvision.utils.make_grid(images))

# print labels
#print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

tensor(-0.7882)
import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 18)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
cuda:0
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=18, bias=True)
)
%%time

import torch.optim as optim

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)

BATCH_SIZE = 16
EPOCHS = 15
OUTPUTS= 1
LR = 0.025
MINI_BATCH_SIZE = 500

print("wololo1")

criterion = nn.CrossEntropyLoss()
print("wololo3")

optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
print("wololo4")

for epoch in range(EPOCHS):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        
        inputs, labels = data[0].to(device), data[1].to(device)
        #inputs, labels = data
        
        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % MINI_BATCH_SIZE == MINI_BATCH_SIZE - 1:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
             (epoch + 1, i-1,running_loss / MINI_BATCH_SIZE))
            running_loss = 0.0
        
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            print(outputs)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100.0 * correct / total))

print('Finished Training')
cuda:0
wololo1
wololo3
wololo4
[1,   498] loss: 2.228
[1,   998] loss: 2.298
Accuracy of the network on the 10000 test images: 29.24 %
[2,   498] loss: 2.171
[2,   998] loss: 2.312
Accuracy of the network on the 10000 test images: 30.47 %
[3,   498] loss: 2.146
[3,   998] loss: 2.262
Accuracy of the network on the 10000 test images: 28.68 %
[4,   498] loss: 2.201
[4,   998] loss: 2.335
Accuracy of the network on the 10000 test images: 31.08 %
[5,   498] loss: 2.197
[5,   998] loss: 2.223
Accuracy of the network on the 10000 test images: 32.20 %
[6,   498] loss: 2.279
[6,   998] loss: 2.253
Accuracy of the network on the 10000 test images: 24.39 %
[7,   498] loss: 2.237
[7,   998] loss: 2.246
Accuracy of the network on the 10000 test images: 32.92 %
[8,   498] loss: 2.223
[8,   998] loss: 2.195
Accuracy of the network on the 10000 test images: 23.49 %
[9,   498] loss: 2.249
[9,   998] loss: 2.239
Accuracy of the network on the 10000 test images: 27.79 %
[10,   498] loss: 2.261
[10,   998] loss: 2.262
Accuracy of the network on the 10000 test images: 28.63 %
[11,   498] loss: 2.238
[11,   998] loss: 2.299
Accuracy of the network on the 10000 test images: 26.84 %
[12,   498] loss: 2.198
[12,   998] loss: 2.344
Accuracy of the network on the 10000 test images: 30.41 %
[13,   498] loss: 2.240
[13,   998] loss: 2.282
Accuracy of the network on the 10000 test images: 28.68 %
[14,   498] loss: 2.263
[14,   998] loss: 2.230
Accuracy of the network on the 10000 test images: 31.75 %
[15,   498] loss: 2.298
[15,   998] loss: 2.278
Accuracy of the network on the 10000 test images: 30.97 %
Finished Training
CPU times: user 1min 23s, sys: 20.6 s, total: 1min 44s
Wall time: 2min 59s
import requests
from torch.autograd import Variable


url1 = "https://chillizet-static.hitraff.pl/uploads/productfeeds/images/99/dd/house-klapki-friends-czarny.jpg"
url2 = "https://e-obuwniczy.pl/pol_pl_POLBUTY-BUT-BAL-VENETTO-635-SKORA-LICOWA-CZARNY-2551_5.jpg"
url3 = "https://bhp-nord.pl/33827-thickbox_default/but-s1p-portwest-steelite-tove-ft15.jpg"
url4 = "https://www.sklepmartes.pl/174554-thickbox_default/dzieciece-kalosze-cosy-wellies-kids-2076-victoria-blue-bejo.jpg"

img = Image.open(requests.get(url4, stream=True).raw)

image_tensor = transform(img).float()
imshow(image_tensor)
image_tensor = image_tensor.unsqueeze_(0)
inputi = Variable(image_tensor)

shoe_names = { 0: "Balerinki", 1: "Botki", 2:"Creepersy", 3: "Czolenka", 4:"Domowe", 5:"Espadryle",
              6:"Glany", 7:"Kalosze", 8:"Klapki", 9:"Kozaki", 10:"Mokasyny", 11:"Polbuty", 12:"Pozostale",
              13:"Sandaly", 14:"Sniegowce", 15:"Sportowe", 16:"Tenisowki", 17:"Trekkingowe"}

output = net(inputi.to(device))
_, predicted = torch.max(output.data, 1)

print(shoe_names[int(predicted)])
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-9770c3effe28> in <module>
      8 url4 = "https://www.sklepmartes.pl/174554-thickbox_default/dzieciece-kalosze-cosy-wellies-kids-2076-victoria-blue-bejo.jpg"
      9 
---> 10 img = Image.open(requests.get(url4, stream=True).raw)
     11 
     12 image_tensor = transform(img).float()

NameError: name 'Image' is not defined
import os, sys

# Open a file
path = "../datasets/Damskie_mini/"
dirs = os.listdir( path )

# This would print all the files and directories
for file in dirs:
   print(file)

trainset.class_to_idx
Trekkingowe
Balerinki
Sniegowce
Mokasyny
Czolenka
Domowe
Glany
Creepersy
Polbuty
Sandaly
Pozostale
Botki
Kalosze
Kozaki
Espadryle
Tenisowki
Sportowe
Klapki
{'Balerinki': 0,
 'Botki': 1,
 'Creepersy': 2,
 'Czolenka': 3,
 'Domowe': 4,
 'Espadryle': 5,
 'Glany': 6,
 'Kalosze': 7,
 'Klapki': 8,
 'Kozaki': 9,
 'Mokasyny': 10,
 'Polbuty': 11,
 'Pozostale': 12,
 'Sandaly': 13,
 'Sniegowce': 14,
 'Sportowe': 15,
 'Tenisowki': 16,
 'Trekkingowe': 17}
Sniegowce
'\n??????????????\nimport os, sys\n\n# Open a file\npath = "./datasets/Damskie_mini/"\ndirs = os.listdir( path )\n\n# This would print all the files and directories\nfor file in dirs:\n   print(file)\n'
import numpy as np
import os.path
import csv

torch.save(net, 'nn.pth')

torch.save(net.state_dict(), "nn-state-dict.pth")