77 KiB
77 KiB
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import os
transform = transforms.Compose(
[ transforms.Resize(32),
transforms.Pad(10, fill=255),
transforms.CenterCrop((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
def check_image(path):
try:
im = Image.open(path)
im.verify()
return True
except:
print(path)
return False
finally:
im.close()
trainset = torchvision.datasets.ImageFolder(root='../datasets/Kolory_mini/', transform=transform,is_valid_file = check_image)
testset = torchvision.datasets.ImageFolder(root='../datasets/Kolory_mini/', transform=transform,is_valid_file = check_image)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=16, shuffle=True, num_workers=12, drop_last=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=16, shuffle=True, num_workers=12, drop_last=True)
print("Done")
Done
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
print(images[0].min())
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
#print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
tensor(-0.6549)
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 14)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
cuda:0
Net( (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=14, bias=True) )
%%time
import torch.optim as optim
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
BATCH_SIZE = 16
EPOCHS = 15
OUTPUTS= 1
LR = 0.025
MINI_BATCH_SIZE = 500
print("wololo1")
criterion = nn.CrossEntropyLoss()
print("wololo3")
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
print("wololo4")
for epoch in range(EPOCHS): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
#inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % MINI_BATCH_SIZE == MINI_BATCH_SIZE - 1: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i-1,running_loss / MINI_BATCH_SIZE))
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (
100.0 * correct / total))
print('Finished Training')
cuda:0 wololo1 wololo3 wololo4 [1, 498] loss: 2.403 Accuracy of the network on the 10000 test images: 23.95 % [2, 498] loss: 2.140 Accuracy of the network on the 10000 test images: 34.82 % [3, 498] loss: 2.048 Accuracy of the network on the 10000 test images: 35.14 % [4, 498] loss: 2.001 Accuracy of the network on the 10000 test images: 32.73 % [5, 498] loss: 1.974 Accuracy of the network on the 10000 test images: 32.56 % [6, 498] loss: 1.923 Accuracy of the network on the 10000 test images: 38.45 % [7, 498] loss: 1.893 Accuracy of the network on the 10000 test images: 37.89 % [8, 498] loss: 1.938 Accuracy of the network on the 10000 test images: 38.00 % [9, 498] loss: 1.854 Accuracy of the network on the 10000 test images: 39.21 % [10, 498] loss: 1.933 Accuracy of the network on the 10000 test images: 38.86 % [11, 498] loss: 1.904 Accuracy of the network on the 10000 test images: 38.81 % [12, 498] loss: 1.899 Accuracy of the network on the 10000 test images: 38.91 % [13, 498] loss: 1.863 Accuracy of the network on the 10000 test images: 32.96 % [14, 498] loss: 1.856 Accuracy of the network on the 10000 test images: 38.66 % [15, 498] loss: 1.838 Accuracy of the network on the 10000 test images: 39.48 % Finished Training CPU times: user 1min 31s, sys: 25.7 s, total: 1min 57s Wall time: 3min 52s
import requests
from torch.autograd import Variable
url1 = "https://chillizet-static.hitraff.pl/uploads/productfeeds/images/99/dd/house-klapki-friends-czarny.jpg"
url2 = "https://e-obuwniczy.pl/pol_pl_POLBUTY-BUT-BAL-VENETTO-635-SKORA-LICOWA-CZARNY-2551_5.jpg"
url3 = "https://bhp-nord.pl/33827-thickbox_default/but-s1p-portwest-steelite-tove-ft15.jpg"
url4 = "https://www.sklepmartes.pl/174554-thickbox_default/dzieciece-kalosze-cosy-wellies-kids-2076-victoria-blue-bejo.jpg"
img = Image.open(requests.get(url3, stream=True).raw)
image_tensor = transform(img).float()
imshow(image_tensor)
image_tensor = image_tensor.unsqueeze_(0)
inputi = Variable(image_tensor)
output = net(inputi.to(device))
_, predicted = torch.max(output.data, 1)
print(output.data)
idx2class = {v: k for k, v in trainset.class_to_idx.items()}
print(idx2class)
print(idx2class[int(predicted)])
#import pickle
#a_file = open("class-shoe.pkl", "wb")
#pickle.dump(shoe_names, a_file)
#a_file.close()
#a_file = open("class-shoe.pkl", "rb")
#outpu = pickle.load(a_file)
#print(outpu[int(predicted)])
#a_file.close()
tensor([[-1.0007, 0.3057, 1.1468, -2.7095, -2.2706, 2.1910, 2.8463, 2.8963, 0.5560, -1.4890, -0.9385, -0.0219, -2.8346, 2.1300]], device='cuda:0') {0: 'biel', 1: 'czern', 2: 'inny-kolor', 3: 'odcienie-brazu-i-bezu', 4: 'odcienie-czerwieni', 5: 'odcienie-fioletu', 6: 'odcienie-granatowego', 7: 'odcienie-niebieskiego', 8: 'odcienie-pomaranczowego', 9: 'odcienie-rozu', 10: 'odcienie-szarosci-i-srebra', 11: 'odcienie-zieleni', 12: 'odcienie-zoltego-i-zlota', 13: 'wielokolorowy'} odcienie-niebieskiego
import numpy as np
import os.path
import csv
if not (os.path.isfile("nn-col-state-dict.pth")):
torch.save(net.state_dict(), "nn-col-state-dict.pth")