aitech-eks-pub/wyk/09_neurozoo.org

1058 lines
32 KiB
Org Mode

* Neurozoo
** Kilka uwag dotyczących wektorów
Wektor wierszowy $\left[x_1,\dots,x_n\right]$ czy kolumnowy $\left[\begin{array}{c}
x_1 \\ \vdots \\ x_n\end{array}\right]$?
Często zakłada się wektor kolumny, będziemy używać *transpozycji*, by otrzymać wektor
wierszowy $\vec{x}^T = \left[x_1,\dots,x_n\right]$.
W praktyce, np. w PyTorchu, może to nie mieć wielkiego znaczenia:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
x = torch.tensor([1.0, -0.5, 2.0])
x
#+END_SRC
#+RESULTS:
:results:
# Out[2]:
: tensor([ 1.0000, -0.5000, 2.0000])
:end:
Musimy tylko uważać, jeśli przemnażamy wektor przez macierz!
** Funkcja sigmoidalna
Funkcja sigmoidalna zamienia dowolną wartość („sygnał”) w wartość z przedziału $(0,1)$, czyli wartość, która może być interperetowana jako prawdopodobieństwo.
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
def sigmoid(x):
return 1 / (1 + torch.exp(-x))
sigmoid(torch.tensor(0.6))
#+END_SRC
#+RESULTS:
:results:
# Out[1]:
: tensor(0.6457)
:end:
#+BEGIN_SRC ipython :session mysession :results file
%matplotlib inline
import matplotlib.pyplot as plt
import torch
x = torch.linspace(-5,5,100)
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x, sigmoid(x))
fname = 'sigmoid.png'
plt.savefig(fname)
fname
#+END_SRC
#+RESULTS:
[[file:# Out[32]:
: 'sigmoid.png'
[[file:./obipy-resources/Tb0Of9.png]]]]
*** PyTorch
Funkcja ~torch.sigmoid~ po prostu stosuje sigmoidę do każdego elementu tensora (/element-wise/).
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
torch.sigmoid(torch.tensor([0.6, 1.0, -5.0]))
#+END_SRC
#+RESULTS:
:results:
# Out[38]:
: tensor([0.6457, 0.7311, 0.0067])
:end:
Istnieje również ~torch.nn.Sigmoid~, które może być używane jako warstwa.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
s = nn.Sigmoid()
s(torch.tensor([0.0, -0.2, 0.4]))
#+END_SRC
#+RESULTS:
:results:
# Out[49]:
: tensor([0.5000, 0.4502, 0.5987])
:end:
**** Implementacja w Pytorchu
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
import torch
class MySigmoid(nn.Module):
def __init__(self):
super(MySigmoid, self).__init__()
def forward(self, x):
return 1 / (1 + torch.exp(-x))
s = MySigmoid()
s(torch.tensor([0.0, 0.5, 0.3]))
#+END_SRC
#+RESULTS:
:results:
# Out[48]:
: tensor([0.5000, 0.6225, 0.5744])
:end:
*** Wagi
Funkcja sigmoidalna nie ma żadnych wyuczalnych wag.
**** *Pytanie*: Czy można rozszerzyć funkcję sigmoidalną o jakieś wyuczalne wagi?
** Regresja liniowa
*** Iloczyn skalarny — przypomnienie
$$\left[1.0, -0.5, 2.0\right]
\left[\begin{array}{c}
3.0 \\
1.5 \\
0.0\end{array}\right]
=
1.0 \cdot 3.0 + -0.5 \cdot 1.5 + 2.0 \cdot 0.0 = 2.25$$
**** Intuicje
- $\vec{a}^T \vec{b}$ mierzy jak bardzo $\vec{a}$ „pasuje” do
$\vec{b}$,
- … zwłaszcza gdy znormalizujemy wektory dzieląc przez $|\vec{a}|$ i $|\vec{b}|$:
$\frac{\vec{a}^T \vec{b}}{|\vec{a}||\vec{b}|} = \cos \theta$,
gdzie $\theta$ to kąt pomiędzy $\vec{a}$ and $\vec{b}$ (podobieństwo kosinusowe!)
- co, jeśli if $\vec{a}^T \vec{b} = 0$? — $\vec{a}$ i $\vec{b}$ są prostopadłe, np.
$\left[1, 2\right] \cdot \left[-2, -1\right]^T = 0$
- a co, jeśli $\vec{a}^T \vec{b} = -1$ — wektor są skierowane w przeciwnym kierunku, jeśli dodatkowo $|\vec{a}|=|\vec{b}|=1$, np.
$\left[\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right] \cdot \left[-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right]^T = -1$
**** W PyTorchu
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
x = torch.tensor([1.0, -0.5, 2.0])
y = torch.tensor([3.0, 1.5, 0.0])
x @ y
#+END_SRC
#+RESULTS:
:results:
# Out[3]:
: tensor(2.2500)
:end:
*** Regresja liniowa jako element sieci neuronowej
Przypomnijmy sobie wzór na regresję liniową:
$$y = w_0 + w_1x_1 + w_2x_2 + \dots + w_{|V|}x_{|v|}$$
Jeśli wprowadzimy sztuczny element wektora $\vec{x}$ ustawiony zawsze na 1 ($x_0 = 1$), wówczas
wzór może przyjąc bardziej zwartą postać:
$$y = \sum_{i=0}^{|V|} w_ix_i = \vec{w}\vec{x}$$
*** PyTorch
**** Implementacja w PyTorchu
Zakładamy, że wektor wejściowy *nie* obejmuje dodatkowego elementu $x_0 = 1$.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn as nn
class MyLinearRegressor(nn.Module):
def __init__(self, vlen):
super(MyLinearRegressor, self).__init__()
self.register_parameter(name='w', param=torch.nn.Parameter(
torch.zeros(vlen, dtype=torch.double, requires_grad=True)))
self.register_parameter(name='b', param=torch.nn.Parameter(
torch.tensor(0., dtype=torch.double, requires_grad=True)))
def forward(self, x):
return self.b + x @ self.w
regressor = MyLinearRegressor(3)
regressor(torch.tensor([0.3, 0.4, 1.0], dtype=torch.double))
#+END_SRC
#+RESULTS:
:results:
# Out[11]:
: tensor(0., dtype=torch.float64, grad_fn=<AddBackward0>)
:end:
**** Gotowy moduł w PyTorchu
Możemy skorzystać z ogólniejszej konstrukcji — warstwy liniowej (ale,
uwaga!, na wyjściu będzie wektor jednoelementowy).
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn as nn
regressor = torch.nn.Linear(in_features=3, out_features=1, bias=True)
regressor(torch.tensor([0.3, 0.4, 1.0]))
#+END_SRC
#+RESULTS:
:results:
# Out[18]:
: tensor([0.1882], grad_fn=<AddBackward0>)
:end:
*** Zastosowania
Bezpośrednio możemy zastosować do zadania regresji dla tekstu (np.
przewidywanie roku publikacji tekstu).
[[./img-linear-regression.png]]
W połączeniu z sigmoidą otrzymamy regresją logistyczną, np. dla zadania klasyfikacji tekstu:
$$p(c|\vec{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + \dots + w_{|V|}x_{|v})
= \sigma(\Sigma_{i=0}^{|V|} w_ix_i) = \sigma(\vec{w}\vec{x})$$
[[./img-logistic-regression.png]]
Tak sieć będzie aktywowana dla tekstu _aardvark in Aachen_:
[[./img-logistic-regression-aardvark.png]]
Regresje logistyczną (liniową zresztą też) dla tekstu możemy połączyć z trikiem z haszowaniem:
\[p(c|\vec{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + \dots + w_{2^b}x_{2^b})
= \sigma(\Sigma_{i=0}^{2^b} w_ix_i) = \sigma(\vec{w}\vec{x})\] \\
{\small hashing function $H : V \rightarrow \{1,\dots,2^b\}$,
e.g. MurmurHash3}
[[./img-logistic-regression-hashing.png]]
**Pytanie:** Jaki tekst otrzyma na pewno taką samą klasę jak _aardvark in Aachen_?
*** Wagi
Liczba wag jest równa rozmiarowi wektora wejściowego (oraz opcjonalnie
obciążenie).
Każda waga odpowiada wyrazowi ze słownika, możemy więc interpretować
wagi jako jednowymiarowy parametr opisujący słowa.
** Warstwa liniowa
*** Mnożenie macierzy przez wektor — przypomnienie
Mnożenie macierzy przez wektor można interpretować jako zrównolegloną operację mnożenie wektora przez wektor.
$$\left[\begin{array}{ccc}
\alert<2>{1.0} & \alert<2>{-2.0} & \alert<2>{3.0} \\
\alert<3>{-2.0} & \alert<3>{0.0} & \alert<3>{10.0}\end{array}\right]
\left[\begin{array}{c}
\alert<2-3>{1.0} \\
\alert<2-3>{-0.5} \\
\alert<2-3>{2.0}\end{array}\right]
=
\left[\begin{array}{c}
\uncover<2->{\alert<2>{8.0}} \\
\uncover<3->{\alert<3>{18.0}}\end{array}\right]$$
Jeśli przemnożymy macierz $n \times m$ przez wektor kolumnowy o długości
$m$, otrzymamy wektor o rozmiarze $n$.
W PyTorchu:
#+BEGIN_SRC ipython :session mysession :results file
import torch
m = torch.tensor([[1.0, -2.0, 3.0],
[-2.0, 0.0, 10.0]])
x = torch.tensor([1.0, -0.5, 2.0])
m @ x
#+END_SRC
#+RESULTS:
[[file:# Out[19]:
: tensor([ 8., 18.])]]
*** Definicja warstwy liniowej
Warstwa liniowa polega na przemnożeniu wejścia przez macierz. Można
to intepretować jako zrównolegloną operację regresji liniowej (równolegle
uczymy czy wykonujemy $n$ regresji liniowych).
*** PyTorch
Warstwa liniowa, która przyjmuje wektor o rozmiarze 3 i zwraca wektor o rozmiarze 2.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn as nn
regressor = torch.nn.Linear(in_features=3, out_features=2, bias=True)
regressor(torch.tensor([0.3, 0.4, 1.0]))
#+END_SRC
#+RESULTS:
:results:
# Out[23]:
: tensor([-1.1909, -0.5831], grad_fn=<AddBackward0>)
:end:
*Pytanie*: Ile wag (parametrów) ma powyżej użyta warstwa?
*** Zastosowania
Warstwa liniowa jest podstawowym elementem sieci neuronowych —
począwszy od prostych sieci neuronowych feed-forward, gdzie warstwy
liniowe łączymy używając funkcji aktywacji (np. sigmoidy).
Oto przykład prostej dwuwarstwowej sieci neuronowej do klasyfikacji binarnej.
[[./img-feed-forward.png]]
** Softmax
W klasyfikacji wieloklasowej należy zwrócić musimy zwrócić rozkład
prawdopodobieństwa po wszystkich klasach, w przeciwieństwie do
klasyfikacji binarnej, gdzie wystarczy zwrócić jedną liczbę —
prawdopodobieństwo pozytywnej klasy ($p$; prawdopodobieństwo drugiej
klasy to po prostu $1-p$).
A zatem na potrzeby klasyfikacji wieloklasowej potrzeba wektorowego
odpowiednika funkcji sigmoidalnej, to jest funkcji, która zamienia
nieznormalizowany wektor $\vec{z} = [z_1,\dots,z_k]$ (pochodzący np. z
poprzedzającej warstwy liniowej) na rozkład prawdopobieństwa.
Potrzebujemy zatem funkcji $s: \mathcal{R}^k \rightarrow [0,1]^k$
spełniającej następujące warunki:
- $s(z_i) = s_i(z) \in [0,1]$
- $\Sigma_i s(z_i) = 1$
- $z_i > z_j \Rightarrow s(z_i) > s(z_j)$
Można by podać takie (*błędne*!) rozwiązanie:
$$s(z_i) = \frac{z_i}{\Sigma_{j=1}^k z_j}$$
To rozwiązanie zadziała błędnie dla liczb ujemnych, trzeba najpierw
użyć funkcji monotonicznej, która przekształaca $\mathcal{R}$ na $\mathcal{R^+}$.
Naturalna funkcja tego rodzaju to funkcja wykładnicza $\exp{x} = e^x$.
Tym sposobem dochodzimy do funkcji softmax:
$$s(z_i) = \frac{e^{z_i}}{\Sigma_{j=1}^k e^{z_j}}$$
Mianownik ułamka w definicji funkcji softmax nazywamy czasami czynnikiem normalizacyjnym:
$Z(\vec{z}) = \Sigma_{j=1}^k e^{z_j}$, wtedy:
$$s(z_i) = \frac{e^{z_i}}{Z(\vec{z})}$$
Definicja w PyTorchu:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
def softmax(z):
z_plus = torch.exp(z)
return z_plus / torch.sum(z_plus)
softmax(torch.tensor([3., 1., -1., 1.]))
#+END_SRC
#+RESULTS:
:results:
# Out[3]:
: tensor([7.8678e-01, 1.0648e-01, 2.6393e-04, 1.0648e-01])
:end:
#+CAPTION: Softmax
[[./softmax.png]]
*** Soft vs hard
Dlaczego /softmax/? Czasami używa się funkcji *hardmax*, która np.
wektora $[3, -1, 0, 5]$ zwróciłaby $[0, 0, 0, 5]$ — to jest po prostu
wektorowa wersja funkcji zwracającej maksimum. Istnieje też funkcja
hard*arg*max, która zwraca wektor /one-hot/ — z jedną jedynką na
pozycji dla największej wartości (zamiast podania największej
wartości), np. wartość hardargmax dla $[3, -1, 0, 5]$ zwróciłaby $[0,
0, 0, 1]$.
Zauważmy, że powszechnie przyjęta nazwa /softmax/ jest właściwie
błędna, funkcja ta powinna nazywać się /softargmax/, jako że w
„miękki” sposób identyfikuje największą wartość przez wartość zbliżoną
do 1 (na pozostałych pozycjach wektora nie będzie 0).
**** *Pytanie*: Jak można zdefiniować funkcję /softmax/ w ścisłym tego słowa znaczeniu („miękki” odpowiednik hardmax, nie hardargmax)?
*** PyTorch
Funkcja ~torch.nn.functional.softmax~ normalizuje wartości dla całego tensora:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
nn.functional.softmax(torch.tensor([0.6, 1.0, -5.0]))
#+END_SRC
#+RESULTS:
:results:
# Out[5]:
: tensor([0.4007, 0.5978, 0.0015])
:end:
… zobaczmy, jak ta funkcja zachowuje się dla macierzy:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
nn.functional.softmax(torch.tensor([[0.6, 1.0], [-2.0, 3.5]]))
#+END_SRC
#+RESULTS:
:results:
# Out[6]:
#+BEGIN_EXAMPLE
tensor([[0.4013, 0.5987],
[0.0041, 0.9959]])
#+END_EXAMPLE
:end:
Za pomocą (zalecanego zresztą) argumentu ~dim~ możemy określić wymiar, wzdłuż którego dokonujemy normalizacji:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
nn.functional.softmax(torch.tensor([[0.6, 1.0], [-2.0, 3.5]]), dim=0)
#+END_SRC
#+RESULTS:
:results:
# Out[8]:
#+BEGIN_EXAMPLE
tensor([[0.9309, 0.0759],
[0.0691, 0.9241]])
#+END_EXAMPLE
:end:
Istnieje również ~torch.nn.Softmax~, które może być używane jako warstwa.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
s = nn.Softmax(dim=0)
s(torch.tensor([0.0, -0.2, 0.4]))
#+END_SRC
#+RESULTS:
:results:
# Out[10]:
: tensor([0.3021, 0.2473, 0.4506])
:end:
**** Implementacja w Pytorchu
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
import torch
class MySoftmax(nn.Module):
def __init__(self):
super(MySoftmax, self).__init__()
def forward(self, x):
ex = torch.exp(x)
return ex / torch.sum(ex)
s = MySigmoid()
s(torch.tensor([0.0, 0.5, 0.3]))
#+END_SRC
#+RESULTS:
:results:
# Out[48]:
: tensor([0.5000, 0.6225, 0.5744])
:end:
***** *Pytanie*: Tak naprawdę wyżej zdefiniowana klasa ~MySoftmax~ nie zachowuje się identycznie jak ~nn.Softmax~. Na czym polega różnica?
*** Przypadek szczególny
Sigmoida jest przypadkiem szczególnym funkcji softmax:
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1} = \frac{e^x}{e^x + e^0} = s([x, 0])_1$$
Ogólniej: softmax na dwuelementowych wektorach daje przesuniętą sigmoidę (przy ustaleniu jednej z wartości).
#+BEGIN_SRC ipython :session mysession :results file
%matplotlib inline
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
x = torch.linspace(-5,5,100)
plt.xlabel("x")
plt.ylabel("y")
a = torch.Tensor(x.size()[0]).fill_(2.)
m = torch.stack([x, a])
plt.plot(x, nn.functional.softmax(m, dim=0)[0])
fname = 'softmax3.png'
plt.savefig(fname)
fname
#+END_SRC
#+RESULTS:
[[file:# Out[19]:
: 'softmax3.png'
[[file:./obipy-resources/gjBA7K.png]]]]
#+BEGIN_SRC ipython :session mysession :results file
%matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import torch
import torch.nn as nn
x = torch.linspace(-5,5,10)
y = torch.linspace(-5,5,10)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plt.xlabel("x")
plt.ylabel("y")
X, Y = torch.meshgrid(x, y)
m = torch.stack([X, Y])
z = nn.functional.softmax(m, dim=0)
ax.plot_wireframe(x, y, z[0])
fname = 'softmax3d.png'
plt.savefig(fname)
fname
#+END_SRC
#+RESULTS:
[[file:# Out[27]:
: 'softmax3d.png'
[[file:./obipy-resources/p96515.png]]]]
*** Wagi
Podobnie jak funkcja sigmoidalna, softmax nie ma żadnych wyuczalnych wag.
*** Zastosowania
Podstawowym zastosowaniem funkcji softmax jest klasyfikacja
wieloklasowa, również w wypadku zadań przetwarzania sekwencji, które
mogą być interpretowane jako klasyfikacja wieloklasowa:
- przewidywanie kolejnego słowa w modelowaniu języka (klasą jest słowo, zbiór klas to słownik, np. klasą początku tekstu /Dzisiaj rano kupiłem w piekarni/ może być /bułki/)
- przypisywanie etykiet (np. części mowy) słowom.
** LogSoftmax
Ze względów obliczeniowych często korzysta się z funkcji *LogSoftmax*
która zwraca logarytmy pradopodobieństw (/logproby/).
$$log s(z_i) = log \frac{e^{z_i}}{\Sigma_{j=1}^k e^{z_j}}$$
*** PyTorch
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
s = nn.LogSoftmax(dim=0)
s(torch.tensor([0.0, -0.2, 0.4]))
#+END_SRC
#+RESULTS:
:results:
# Out[25]:
: tensor([-1.1971, -1.3971, -0.7971])
:end:
Niektóre funkcje kosztu (np. ~NLLLoss~) zaimplementowane w PyTorchu
operują właśnie na logarytmach prawdopobieństw.
** Przykład: klasyfikacja wieloklasowa
Na przykładzie rozpoznawania dyscypliny sportu: git://gonito.net/sport-text-classification.git
Wczytujemy zbiór uczący:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import gzip
from pytorch_regression.analyzer import vectorize_text, vector_length
texts = []
labels = []
labels_dic = {}
labels_revdic = {}
c = 0
with gzip.open('sport-text-classification/train/train.tsv.gz', 'rt') as fh:
for line in fh:
line = line.rstrip('\n')
line = line.replace('\\\t', ' ')
label, text = line.split('\t')
texts.append(text)
if label not in labels_dic:
labels_dic[label] =c
labels_revdic[c] = label
c += 1
labels.append(labels_dic[label])
nb_of_labels = len(labels_dic)
labels_dic
#+END_SRC
#+RESULTS:
:results:
# Out[85]:
#+BEGIN_EXAMPLE
{'zimowe': 0,
'moto': 1,
'tenis': 2,
'pilka-reczna': 3,
'sporty-walki': 4,
'koszykowka': 5,
'siatkowka': 6,
'pilka-nozna': 7}
#+END_EXAMPLE
:end:
Przygotowujemy model:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch.nn as nn
from torch import optim
model = nn.Sequential(
nn.Linear(vector_length, nb_of_labels),
nn.LogSoftmax()
)
optimizer = optim.Adam(model.parameters())
#+END_SRC
#+RESULTS:
:results:
# Out[8]:
:end:
Funkcja kosztu to log-loss.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn.functional as F
loss_fn = torch.nn.NLLLoss()
expected_class_id = torch.tensor([2])
loss_fn(torch.log(
torch.tensor([[0.3, 0.5, 0.1, 0.0, 0.1]])),
expected_class_id)
#+END_SRC
#+RESULTS:
:results:
# Out[9]:
: tensor(2.3026)
:end:
Pętla ucząca:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
iteration = 0
step = 50
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
for t, y_exp in zip(texts, labels):
x = vectorize_text(t).float().unsqueeze(dim=0)
optimizer.zero_grad()
y_logprobs = model(x)
loss = loss_fn(y_logprobs, torch.tensor([y_exp]))
loss.backward()
with torch.no_grad():
closs += loss
optimizer.step()
if iteration % 50 == 0:
print((closs / step).item(), loss.item(), iteration, y_exp, torch.exp(y_logprobs), t)
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
iteration += 1
if iteration == 5000:
break
#+END_SRC
#+RESULTS:
:results:
# Out[86]:
:end:
Model jest tak prosty, że jego wagi są interpretowalne.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
with torch.no_grad():
x = vectorize_text('NBA').float().unsqueeze(dim=0)
y_prob = model(x)
torch.exp(y_prob)
#+END_SRC
#+RESULTS:
:results:
# Out[26]:
: tensor([[0.0070, 0.0075, 0.0059, 0.0061, 0.0093, 0.9509, 0.0062, 0.0071]])
:end:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
with torch.no_grad():
x = vectorize_text('NBA').float().unsqueeze(dim=0)
ix = torch.argmax(x).item()
model[0].weight[:,ix]
#+END_SRC
#+RESULTS:
:results:
# Out[89]:
#+BEGIN_EXAMPLE
Parameter containing:
tensor([[ 7.8818e-04, 1.0930e-03, 5.9632e-04, ..., 8.1697e-04,
1.2976e-03, -8.4243e-04],
[-1.0164e-03, -8.9416e-04, -1.8650e-03, ..., 6.6075e-04,
-5.4883e-04, -1.1845e-03],
[-3.1395e-04, 1.8564e-03, -7.0267e-04, ..., -4.7028e-04,
7.0584e-04, 9.8026e-04],
...,
[ 4.8792e-05, 1.9183e-03, 1.3152e-03, ..., 4.6495e-04,
9.5338e-04, 1.9107e-03],
[-5.2181e-04, 1.1135e-03, 7.1943e-04, ..., 3.7215e-04,
1.0002e-03, -1.7985e-03],
[-9.1641e-04, 1.6301e-03, 1.7372e-03, ..., 1.2390e-03,
-9.1001e-04, 1.5711e-03]], requires_grad=True)
#+END_EXAMPLE
:end:
Możemy nawet zaprezentować wykres przedstawiający rozmieszczenie słów względem dwóch osi odnoszących się do poszczególnych wybranych dyscyplin.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
%matplotlib inline
import matplotlib.pyplot as plt
with torch.no_grad():
words = ['piłka', 'klub', 'kort', 'boisko', 'samochód']
words_ixs = [torch.argmax(vectorize_text(w).float().unsqueeze(dim=0)).item() for w in words]
x_label = labels_dic['pilka-nozna']
y_label = labels_dic['tenis']
x = [model[0].weight[x_label, ix] for ix in words_ixs]
y = [model[0].weight[y_label, ix] for ix in words_ixs]
fig, ax = plt.subplots()
ax.scatter(x, y)
for i, txt in enumerate(words):
ax.annotate(txt, (x[i], y[i]))
#+END_SRC
#+RESULTS:
:results:
# Out[45]:
[[file:./obipy-resources/5egYcv.png]]
:end:
** Zadanie etykietowania sekwencji
Zadanie etykietowania sekwencji (/sequence labelling/) polega na przypisaniu poszczególnym wyrazom (tokenom) tekstu *etykiet* ze skończonego zbioru. Definiując formalnie:
- rozpatrujemy ciąg wejściowy tokenów $(t^1,\dots,t^K)$
- dany jest skończony zbiór etykiet $L = \{l_1,\dots,l_{|L|}\}$, dla uproszczenia można założyć, że etykietami
są po prostu kolejne liczby, tj. $L=\{0,\dots,|L|-1\}$
- zadanie polega na wygenerowaniu sekwencji etykiet (o tej samej długości co ciąg wejściowy!) $(y^1,\dots,y^K)$,
$y^k \in L$
Zadanie etykietowania można traktować jako przypadek szczególny klasyfikacji wieloklasowej, z tym, że klasyfikacji dokonujemy wielokrotnie — dla każdego tokenu (nie dla każdego tekstu).
Przykłady zastosowań:
- oznaczanie częściami mowy (/POS tagger/) — czasownik, przymiotnik, rzeczownik itd.
- oznaczanie etykiet nazw w zadaniu NER (nazwisko, kwoty, adresy — najwięcej tokenów będzie miało etykietę pustą, zazwyczaj oznaczaną przez ~O~)
*** *Pytanie*: czy zadanie tłumaczenia maszynowego można potraktować jako problem etykietowania sekwencji?
*** Przykładowe wyzwanie NER CoNLL-2003
Zob. <https://gonito.net/challenge/en-ner-conll-2003>.
Przykładowy przykład uczący (~xzcat train.tsv.xz| head -n 1~):
O O B-MISC I-MISC O O O O O B-LOC O B-LOC O O O O O O O O O O O B-MISC I-MISC O O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER I-PER O B-LOC O O O O O B-PER I-PER O O B-LOC O O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O B-LOC O B-LOC O O O O O O B-PER I-PER O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O O O O B-PER I-PER I-PER O B-LOC O O O O O O B-PER I-PER O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O O O O B-PER I-PER O B-LOC O O O O O O B-PER I-PER O B-LOC O O O O O B-PER I-PER O B-LOC O B-LOC O O O O O B-PER I-PER O O O O O GOLF - BRITISH MASTERS THIRD ROUND SCORES . </S> NORTHAMPTON , England 1996-08-30 </S> Leading scores after </S> the third round of the British Masters on Friday : </S> 211 Robert Allenby ( Australia ) 69 71 71 </S> 212 Pedro Linhart ( Spain ) 72 73 67 </S> 216 Miguel Angel Martin ( Spain ) 75 70 71 , Costantino Rocca </S> ( Italy ) 71 73 72 </S> 217 Antoine Lebouc ( France ) 74 73 70 , Ian Woosnam 70 76 71 , </S> Francisco Cea ( Spain ) 70 71 76 , Gavin Levenson ( South </S> Africa ) 66 75 76 </S> 218 Stephen McAllister 73 76 69 , Joakim Haeggman ( Swe ) 71 77 </S> 70 , Jose Coceres ( Argentina ) 69 78 71 , Paul Eales 75 71 72 , </S> Klas Eriksson ( Sweden ) 71 75 72 , Mike Clayton ( Australia ) </S> 69 76 73 , Mark Roe 69 71 78 </S> 219 Eamonn Darcy ( Ireland ) 74 76 69 , Bob May ( U.S. ) 74 75 70 , </S> Paul Lawrie 72 75 72 , Miguel Angel Jimenez ( Spain ) 74 72 </S> 73 , Peter Mitchell 74 71 75 , Philip Walton ( Ireland ) 71 74 </S> 74 , Peter O'Malley ( Australia ) 71 73 75 </S> 220 Barry Lane 73 77 70 , Wayne Riley ( Australia ) 71 78 71 , </S> Martin Gates 71 77 72 , Bradley Hughes ( Australia ) 73 75 72 , </S> Peter Hedblom ( Sweden ) 70 75 75 , Retief Goosen ( South </S> Africa ) 71 74 75 , David Gilford 69 74 77 . </S>
W pierwszym polu oczekiwany wynik zapisany za pomocą notacji *BIO*.
Jako metrykę używamy F1 (z pominięciem tagu ~O~)
*** Metryka F1
*** Etykietowanie za pomocą klasyfikacji wieloklasowej
Można potraktować problem etykietowania dokładnie tak jak problem
klasyfikacji wieloklasowej (jak w przykładzie klasyfikacji dyscyplin
sportowych powyżej), tzn. rozkład prawdopodobieństwa możliwych etykiet
uzyskujemy poprzez zastosowanie prostej warstwy liniowej i funkcji softmax:
$$p(l^k=j) = s(W\vec{v}(t^k))_j = \frac{e^{(W\vec{v}(t^k))_j}}{Z},$$
gdzie $\vec{v}(t^k)$ to reprezentacja wektorowa tokenu $t^k$.
Zauważmy, że tutaj (w przeciwieństwie do klasyfikacji całego tekstu)
reprezentacja wektorowa jest bardzo uboga: wektor _one-hot_! Taki
klasyfikator w ogóle nie będzie brał pod uwagę kontekstu, tylko sam
wyraz, więc tak naprawdę zdegeneruje się to do zapamiętania częstości
etykiet dla każdego słowa osobno.
**** Bogatsza reprezentacja słowa
Można spróbować uzyskać bogatszą reprezentację dla słowa biorąc pod uwagę na przykład:
- długość słowa
- kształt słowa (/word shape/), np. czy pisany wielkimi literami, czy składa się z cyfr itp.
- n-gramy znakowe wewnątrz słowa (np. słowo /Kowalski/ można zakodować jako sumę wektorów
trigramów znakówych $\vec{v}(Kow) + \vec{v}(owa) + \vec{v}(wal) + \vec{v}(als) + \vec{v}(lsk) + \vec{v}(ski)$
Cały czas nie rozpatrujemy jednak w tej metodzie kontekstu wyrazu.
(/Renault/ w pewnym kontekście może być nazwą firmy, w innym —
nazwiskiem).
**** Reprezentacja kontekstu
Za pomocą wektora można przedstawić nie pojedynczy token $t^k$, lecz
cały kontekst, dla /okna/ o długości $c$ będzie to kontekst $t^{k-c},\dots,t^k,\dots,t^{k+c}$.
Innymi słowy klasyfikujemy token na podstawie jego samego oraz jego kontekstu:
$$p(l^k=j) = \frac{e^{(W\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}))_j}}{Z}.$$
Zauważmy, że w tej metodzie w ogóle nie rozpatrujemy sensowności
sekwencji wyjściowej (etykiet), np. może być bardzo mało
prawdopodobne, że bezpośrednio po nazwisku występuje data.
Napiszmy wzór określający prawdopodobieństwo całej sekwencji, nie
tylko pojedynczego tokenu. Na razie będzie to po prostu iloczyn poszczególnych wartości.
$$l = (l^1,\\dots,l^k), p(l) = \prod_{k=1}^K \frac{e^{(W\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}))_{l^k}}}{Z_k} = \frac{e^{\sum_{k=1}^K (W\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}))_{l^k}}}{\prod_{k=1}^K Z_k}$$
Reprezentacja kontekstu może być funkcją embeddingów wyrazów
(zakładamy, że embedding nie zależy od pozycji słowa).
$$\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}) = f(\vec{E}(t^{k-c}),\dots,\vec{E}(t^k),\dots,\vec{E}({t^{k+c}}))$$
** Warunkowe pola losowe
Warunkowe pola losowe (/Conditional Random Fields/, /CRF/) to klasa
modeli, które pozwalają uwzględnić zależności między punktami danych
(które można wyrazić jako graf). Najprostszym przykładem będzie prosty
graf wyrażający „następowanie po” (czyli sekwencje). Do poprzedniego
wzoru dodamy składnik $V_{i,j}$ (który można interpretować jako
macierz) określający prawdopodobieństwo, że po etykiecie o numerze $i$ wystąpi etykieta o numerze $j$.
*Pytanie*: Czy macierz $V$ musi być symetryczna? Czy $V_{i,j} = V_{j,i}$? Czy jakieś specjalne wartości występują na przekątnej?
Macierz $V$ wraz z macierzą $W$ będzie stanowiła wyuczalne wagi w naszym modelu.
Wartości $V_{i,j}$ nie stanowią bezpośrednio prawdopodobieństwa, mogą
przyjmować dowolne wartości, które będę normalizowane podobnie, tak jak to się dzieje w funkcji Softmax.
W takiej wersji warunkowych pól losowych otrzymamy następujący wzór na prawdopodobieństwo całej sekwencji.
$$p(l) = \frac{e^{\sum_{k=1}^K (W\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}))_{l^k} + \sum_{k=1}^{K-1} V_{l^k,l^{k+1}}}}{\prod_{k=1}^K Z_k}$$
** Algorytm Viterbiego
W czasie inferencji mamy ustalone wagi funkcji $\vec{v}(\dots)$ oraz
macierz $V$. Szukamy sekwencji $y$ która maksymalizuje prawdopodobieństwo estymowane przez model:
$$y = \underset{l}{\operatorname{argmax}} \hat{p}(l|t^1,\dots,t^K)$$
Naiwne podejście polegające na obliczeniu prawdopodobieństw wszystkich możliwych sekwencji miałoby
nieakceptowalną złożoność czasową $O(|L|^K)$.
Na szczęście, możemy użyć *algorytmu Viterbiego* o lepszej złożoności
obliczeniowej, algorytmu opartego na idei programowania dynamicznego.
W algorytmie będziemy wypełniać dwuwymiarowe tabele $s[i, j]$ i $b[i, j]$:
- $s[i, j]$ — będzie zawierać maksymalne prawdopodobieństwo (właściwie: nieznormalizowaną wartość,
która jest monotoniczna względem prawdopodobieństwa)
dla ciągów o długości $i$ zakończonych etykietą $l_j$,
- $b[i, j]$ — będzie zawierać „wskaźnik” wsteczny (/backpointer/) do podciągu o długości $i-1$, dla którego
razem z $l_j$ jest osiągana maksymalna wartość $s[i, j]$.
Inicjalizacja:
- $s[1, j] = (W\vec{v}(t^k,\dots,t^{k+c}))_j$,
- $b[1, j]$ — nie musimy wypełniać tej wartości.
Dla $i > 1$ i dla każdego $j$ będziemy teraz szukać:
$$\underset{q \in \{1,\dots,|V|\}}{\operatorname{max}} s[i-1, q] + (W\vec{v}(t^{k-c},\dots,t^k,\dots,t^{k+c}))_j + V_{q, j}$$
Tę wartość przypiszemy do $s[i, j]$, z kolei do $b[i, j]$ — indeks
$q$, dla którego ta największa wartość jest osiągnięta.
Najpierw obliczenia wykonujemy wprzód wypełniając tabelę dla coraz większych wartości $j$.
W ten sposób otrzymamy największą wartość (nieznormalizowanego) prawdopodobieństwa:
$$\underset{q \in \{1,\dots,|V|\}}{\operatorname{max}} s[K, q]$$
oraz ostatnią etykietę:
$$y^K = \underset{q \in \{1,\dots,|V|\}}{\operatorname{argmax}} s[K, q]$$
Aby uzyskać cały ciąg, kierujemy się /wstecz/ używając wskaźników:
$$y^i = b[i, y^{i+1}]$$
[[./crf-viterbi.png]]
*** Złożoność obliczeniowa
Zauważmy, że rozmiar tabel $s$ i $b$ wynosi $K \times |L|$, a koszt
wypełnienia każdej komórki to $|L|$, a zatem złożoność algorytmu jest wielomianowa:
$O(K|L|^2)$.
*Pytanie:* Czy gdyby uzależnić etykietę nie tylko od poprzedniej
etykiety, lecz również od jeszcze wcześniejszej, to złożoność
obliczeniowa byłaby taka sama?
*** Przykład
Rozpatrzmy uproszczony przykład tagowania częściami mowy:
- słownik $V=\{\mathit{Ala}, \mathit{powieść}, \mathit{ma}\}$,
- zbiór etykiet $L=\{\mathit{C}, \mathit{P}, \mathit{R}\}$,
- kontekst nie jest uwzględniany ($c = 0$).
(To, że liczba słów i etykiet jest taka sama, jest przypadkowe, nie ma znaczenia)
Zakładamy, że słowa reprezentujemy wektorowo za pomocą prostej reprezentacji one-hot.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
vocab = ['Ala', 'ma', 'powieść']
labels = ['C', 'P', 'R']
onehot = {
'Ala': torch.tensor([1., 0., 0.]),
'ma': torch.tensor([0., 1., 0.]),
'powieść': torch.tensor([0., 0., 1.])
}
onehot['ma']
#+END_SRC
#+RESULTS:
:results:
# Out[2]:
: tensor([0., 1., 0.])
:end:
Przyjmijmy, że w czasie uczenia zostały ustalone następujące wartości
macierzy $W$ i $V$ (samego procesu uczenia nie pokazujemy tutaj):
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn as nn
matrixW = torch.tensor(
[[-1., 3.0, 3.0], # C
[0., 2.0, -2.0], # P
[4., -2.0, 3.0]]) # R
# Ala ma powieść
# rozkład prawdopodobieństwa, gdyby patrzeć tylko na słowo
nn.functional.softmax(matrixW @ onehot['powieść'], dim=0)
#+END_SRC
#+RESULTS:
:results:
# Out[9]:
: tensor([0.4983, 0.0034, 0.4983])
:end:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
import torch.nn as nn
matrixV = torch.tensor(
[[-0.5, 1.5, 2.0], # C
[0.5, 0.8, 2.5], # P
[2.0, 0.8, 0.2]]) # R
# C P R
# co występuje po przymiotniku? - rozkład prawdopodobieństwa
nn.functional.softmax(matrixV[1], dim=0)
#+END_SRC
#+RESULTS:
:results:
# Out[10]:
: tensor([0.1027, 0.1386, 0.7587])
:end:
Algorytm Viterbiego:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
d = ['Ala', 'ma', 'powieść']
s = []
b = []
# inicjalizacja
s.append(matrixW @ onehot[d[0]])
b.append(None)
# wprzód
i = 1
os = []
ob = []
for j in range(0, len(labels)):
z = s[i-1] + matrixV[:,j] + matrixW @ onehot[d[i]]
ns = torch.max(z).item()
nb = torch.argmax(z).item()
os.append(ns)
ob.append(nb)
os
#+END_SRC
#+RESULTS:
:results:
# Out[16]:
: [4.0, 3.5, 4.5]
:end: