22 KiB
22 KiB
Klasyfikacja wieloklasowa i sequence labelling
import numpy as np
import gensim
import torch
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from datasets import load_dataset
from torchtext.vocab import Vocab
from collections import Counter
from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
Klasyfikacja
Klasfikacja binarna- 2 klasy
CATEGORIES = ['soc.religion.christian', 'alt.atheism']
newsgroups = fetch_20newsgroups(categories=CATEGORIES)
X = newsgroups['data']
Y = newsgroups['target']
Y_names = newsgroups['target_names']
X[0:1]
Y
Y_names
del CATEGORIES, newsgroups, X, Y, Y_names
klasyfikacja wieloklasowa
newsgroups_train_dev = fetch_20newsgroups(subset = 'train')
newsgroups_test = fetch_20newsgroups(subset = 'test')
newsgroups_train_dev_text = newsgroups_train_dev['data']
newsgroups_test_text = newsgroups_test['data']
Y_train_dev = newsgroups_train_dev['target']
Y_test = newsgroups_test['target']
newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)
Y_names = newsgroups_train_dev['target_names']
Y_train_dev
Y_names
Jaki baseline?
pd.value_counts(Y_train)
accuracy_score(Y_test, np.ones_like(Y_test) * 10)
Pytanie - w jaki sposób stworzyć taki klasyfikator na podstawie tylko wiedzy z poprzednich ćwiczeń?
Zadanie - stworzyć klasyfikator regresji logistycznej one vs rest na podstawie tfdif. TFIDF powinien mieć słownik o wielkości 10000
https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
FEAUTERES = 10_000
vectorizer = TfidfVectorizer(max_features=FEAUTERES)
X_train = vectorizer.fit_transform(newsgroups_train_text)
X_dev = vectorizer.transform(newsgroups_dev_text)
X_test = vectorizer.transform(newsgroups_test_text)
clf = OneVsRestClassifier(LogisticRegression()).fit(X_train, Y_train)
clf.predict(X_train[0:1])
clf.predict_proba(X_train[0:1])
np.max(clf.predict_proba(X_train[0]))
accuracy_score(clf.predict(X_train), Y_train)
accuracy_score(clf.predict(X_dev), Y_dev)
accuracy_score(clf.predict(X_test), Y_test)
Podejście softmax na tfidif
Zadanie Na podstawie poprzednich zajęć stworzyć sieć w pytorch bez warstw ukrytych, z jedną warstwą _output z funkcją softmax (bez trenowania i ewaluacji sieci)
Użyć https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html?highlight=softmax
X_train
class NeuralNetworkModel(torch.nn.Module):
def __init__(self,FEAUTERES, output_size):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEAUTERES,OUTPUT_SIZE)
self.softmax = torch.nn.Softmax(dim=0)
def forward(self, x):
x = self.fc1(x)
x = self.softmax(x)
return x
OUTPUT_SIZE = len(Y_names)
nn_model = NeuralNetworkModel(FEAUTERES, OUTPUT_SIZE)
nn_model(torch.Tensor(X_train[0:3].astype(np.float32).todense()))
BATCH_SIZE = 5
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.2)
#optimizer = torch.optim.Adam(nn_model.parameters())
def get_loss_acc(model, X_dataset, Y_dataset):
loss_score = 0
acc_score = 0
items_total = 0
model.eval()
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
X = X_dataset[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_dataset[i:i+BATCH_SIZE]
Y = torch.tensor(Y)
Y_predictions = model(X)
acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()
items_total += Y.shape[0]
loss = criterion(Y_predictions, Y)
loss_score += loss.item() * Y.shape[0]
return (loss_score / items_total), (acc_score / items_total)
for epoch in range(5):
loss_score = 0
acc_score = 0
items_total = 0
nn_model.train()
for i in range(0, Y_train.shape[0], BATCH_SIZE):
X = X_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y)
Y_predictions = nn_model(X)
acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
display(epoch)
display(get_loss_acc(nn_model, X_train, Y_train))
display(get_loss_acc(nn_model, X_dev, Y_dev))
X.shape
newsgroups_train_text
Podejście softmax z embeddingami na przykładzie NER
# !pip install torchtext
# !pip install datasets
dataset = load_dataset("conll2003")
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab = build_vocab(dataset['train']['tokens'])
dataset['train']['tokens']
len(vocab.itos)
vocab['on']
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
max([max(x) for x in dataset['train']['ner_tags'] ])
class NERModel(torch.nn.Module):
def __init__(self,):
super(NERModel, self).__init__()
self.emb = torch.nn.Embedding(23627,200)
self.fc1 = torch.nn.Linear(600,9)
#self.softmax = torch.nn.Softmax(dim=0)
# nie trzeba, bo używamy https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
# jako kryterium
def forward(self, x):
x = self.emb(x)
x = x.reshape(600)
x = self.fc1(x)
#x = self.softmax(x)
return x
train_tokens_ids[0][1:4]
ner_model = NERModel()
ner_model(train_tokens_ids[0][1:4])
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(ner_model.parameters())
len(train_labels)
for epoch in range(2):
loss_score = 0
acc_score = 0
prec_score = 0
selected_items = 0
recall_score = 0
relevant_items = 0
items_total = 0
nn_model.train()
#for i in range(len(train_labels)):
for i in range(100):
for j in range(1, len(train_labels[i]) - 1):
X = train_tokens_ids[i][j-1: j+2]
Y = train_labels[i][j: j+1]
Y_predictions = ner_model(X)
acc_score += int(torch.argmax(Y_predictions) == Y)
if torch.argmax(Y_predictions) != 0:
selected_items +=1
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
prec_score += 1
if Y.item() != 0:
relevant_items +=1
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
recall_score += 1
items_total += 1
optimizer.zero_grad()
loss = criterion(Y_predictions.unsqueeze(0), Y)
loss.backward()
optimizer.step()
loss_score += loss.item()
precision = prec_score / selected_items
recall = recall_score / relevant_items
f1_score = (2*precision * recall) / (precision + recall)
display('epoch: ', epoch)
display('loss: ', loss_score / items_total)
display('acc: ', acc_score / items_total)
display('prec: ', precision)
display('recall: : ', recall)
display('f1: ', f1_score)
loss_score = 0
acc_score = 0
prec_score = 0
selected_items = 0
recall_score = 0
relevant_items = 0
items_total = 0
nn_model.eval()
for i in range(100):
#for i in range(len(test_labels)):
for j in range(1, len(test_labels[i]) - 1):
X = test_tokens_ids[i][j-1: j+2]
Y = test_labels[i][j: j+1]
Y_predictions = ner_model(X)
acc_score += int(torch.argmax(Y_predictions) == Y)
if torch.argmax(Y_predictions) != 0:
selected_items +=1
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
prec_score += 1
if Y.item() != 0:
relevant_items +=1
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
recall_score += 1
items_total += 1
loss = criterion(Y_predictions.unsqueeze(0), Y)
loss_score += loss.item()
precision = prec_score / selected_items
recall = recall_score / relevant_items
f1_score = (2*precision * recall) / (precision + recall)
display('loss: ', loss_score / items_total)
display('acc: ', acc_score / items_total)
display('prec: ', precision)
display('recall: : ', recall)
display('f1: ', f1_score)
Zadanie domowe
- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003
- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze lub nie).
- klasyfikator powinien obejmować dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)
- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.60
- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo termin 08.06, 80 punktów