aitech-eks-pub/wyk/15_transformer.ipynb

271 lines
6.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 15. <i>Sieci Transformer i ich zastosowanie w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modele Transformer\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Atencja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Atencję w modelach Transformer można interpretować jako rodzaj\n",
"„miękkiego” odpytywania swego rodzaju bazy danych, w której\n",
"przechowywane są pary klucz-wartość. Mamy trzy rodzaje wektorów (a\n",
"właściwie macierzy, bo wektory są od razu upakowane w macierze):\n",
"\n",
"- $Q$ - macierz zapytań,\n",
"- $K$ - macierz kluczy,\n",
"- $V$ - macierz wartości odpowiadających kluczom $K$.\n",
"\n",
"W atencji modeli Transformer patrzymy jak bardzo zapytania $Q$ pasują\n",
"do kluczy $K$ i na tej podstawie zwracamy wartości $V$ (im bardziej\n",
"**klucz** pasuje do **zapytania**, tym większy wkład wnosi odpowiednia **wartość**).\n",
"Ten rodzaj odpytywania można zrealizować z pomocą mnożenia macierzy i funkcji softmax:\n",
"\n",
"$$\\operatorname{Atention}(Q,K,V) = \\operatorname{softmax}(QK^T)V$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Uproszczony przykład\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Załóżmy, że rozmiar embeddingu wynosi 4, w macierzach rozpatrywać\n",
"będziemy po 3 wektory naraz (możemy sobie wyobrazić, że zdanie zawiera 3 wyrazy).\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[20.5700, 36.2400, 31.1000],\n",
" [15.1100, 13.9100, 7.9500],\n",
" [ 2.2100, 7.1800, 7.4000]])"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"Q = torch.tensor([\n",
" [0.3, -2.0, 0.4, 6.0],\n",
" [-1.0, 1.5, 0.2, 3.0],\n",
" [0.3, -1.0, 0.2, 1.0]])\n",
"\n",
"K = torch.tensor([\n",
" [-0.5, 1.7, 0.3, 4.0],\n",
" [0.4, -1.5, 0.3, 5.5],\n",
" [-1.0, -3.5, 1.0, 4.0]])\n",
"\n",
"M = Q @ torch.transpose(K, 0, 1)\n",
"M"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jak widać, najbardziej pierwszy wektor $Q$ pasuje do drugiego wektora $K$.\n",
"Znormalizujmy te wartości używać funkcji softmax.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[1.5562e-07, 9.9418e-01, 5.8236e-03],\n",
" [7.6807e-01, 2.3134e-01, 5.9683e-04],\n",
" [3.0817e-03, 4.4385e-01, 5.5307e-01]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"Mn = torch.softmax(M, 1)\n",
"Mn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Drugi wektor zapytania najbardziej pasuje do pierwszego klucza, trochę\n",
"mniej do drugiego klucza, o wiele mniej do trzeciego klucza. Te\n",
"wektory to oczywiście wektory atencji (drugie słowo najbardziej\n",
"„patrzy” na pierwsze słowo).\n",
"\n",
"Teraz będziemy przemnażać przez wektory wartości:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 3.9750e+00, 9.9419e-02, 1.0116e-01, 1.5765e-01, 5.8255e-04],\n",
" [ 9.2517e-01, 6.9357e+00, 2.3313e-02, -3.8112e+00, 9.2174e-01],\n",
" [ 1.6095e+00, 7.2120e-02, 2.1031e-01, 5.5597e+00, 5.9005e-02]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"V = torch.tensor([\n",
" [0.0, 9.0, 0.0, -5.0, 1.2],\n",
" [4.0, 0.1, 0.1, 0.1, 0.0],\n",
" [-0.3, 0.0, 0.3, 10.0, 0.1]])\n",
"\n",
"Mn @ V"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Dodatkowa normalizacja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W praktyce dobrze jest znormalizować pierwszy iloczyn przez\n",
"$\\sqrt{d_k}$, gdzie $d_k$ to rozmiar wektora klucza.\n",
"\n",
"$$\\operatorname{Atention}(Q,K,V) = \\operatorname{softmax}(\\frac{QK^T}{\\sqrt{d^k}})V$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Skąd się biorą Q, K i V?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wektory (macierze) $Q$, $K$ i $V$ w pierwszej warstwie pochodzą z\n",
"embeddingów tokenów $E$ (właściwie jednostek BPE).\n",
"\n",
"- $Q$ = $EW^Q$\n",
"- $K$ = $EW^K$\n",
"- $V$ = $EW^V$\n",
"\n",
"W kolejnych warstwach zamiast $E$ wykorzystywane jest wyjście z poprzedniej warstwy.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Literatura\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[https://arxiv.org/pdf/1706.03762.pdf](https://arxiv.org/pdf/1706.03762.pdf)\n",
"\n"
]
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"subtitle": "15.Sieci Transformer i ich zastosowanie w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}