aitech-moj-2023/cw/04_statystyczny_model_językowy.ipynb
Jakub Pokrywka 85d14a1c10 update
2022-07-05 11:24:56 +02:00

177 lines
4.7 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 4. <i>Statystyczny model językowy</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2022)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "code",
"execution_count": 278,
"metadata": {},
"outputs": [],
"source": [
"NR_INDEKSU = 375985"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://web.stanford.edu/~jurafsky/slp3/3.pdf"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"class Model():\n",
" \n",
" def __init__(self, vocab_size=30_000, UNK_token= '<UNK>'):\n",
" pass\n",
" \n",
" def train(corpus:list) -> None:\n",
" pass\n",
" \n",
" def get_conditional_prob_for_word(text: list, word: str) -> float:\n",
" pass\n",
" \n",
" def get_prob_for_text(text: list) -> float:\n",
" pass\n",
" \n",
" def most_probable_next_word(text:list) -> str:\n",
" 'nie powinien zwracań nigdy <UNK>'\n",
" pass\n",
" \n",
" def high_probable_next_word(text:list) -> str:\n",
" 'nie powinien zwracań nigdy <UNK>'\n",
" pass\n",
" \n",
" def generate_text(text_beggining:list, length: int, greedy: bool) -> list:\n",
" 'nie powinien zwracań nigdy <UNK>'\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def get_ppl(text: list) -> float:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"def get_entropy(text: list) -> float:\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- wybierz tekst w dowolnym języku (10_000_000 słów)\n",
"- podziel zbiór na train/test w proporcji 90/100\n",
"- stworzyć unigramowy model językowy\n",
"- stworzyć bigramowy model językowy\n",
"- stworzyć trigramowy model językowy\n",
"- wymyśl 5 krótkich zdań. Policz ich prawdopodobieństwo\n",
"- napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla train i test\n",
"- wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla high_probable_next_word teksty były orginalne. Czy wynik będzię sie róźnił dla tekstów np.\n",
"`We sketch how LoomisWhitney follows from this: Indeed, let X be a uniformly distributed random variable with values` oraz `random variable with values`?\n",
"- stwórz model dla korpusu z ZADANIE 1 i policz perplexity dla każdego z tekstów (zrób split 90/10) dla train i test\n",
"\n",
"- klasyfikacja za pomocą modelu językowego\n",
"- wygładzanie metodą laplace'a"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### START ZADANIA"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### KONIEC ZADANIA"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji. Warunkiem zaliczenia jest uzyskanie wyniku większego niż baseline (zwracanie zawsze bardziej licznej klasy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## WYKONANIE ZADAŃ\n",
"Zgodnie z instrukcją 01_Kodowanie_tekstu.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Teoria informacji"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wygładzanie modeli językowych"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "0.Informacje na temat przedmiotu[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}