2078 lines
259 KiB
Plaintext
2078 lines
259 KiB
Plaintext
{
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0,
|
||
"metadata": {
|
||
"accelerator": "GPU",
|
||
"colab": {
|
||
"name": "Impact_of_dropout.ipynb",
|
||
"provenance": [],
|
||
"collapsed_sections": [],
|
||
"include_colab_link": true
|
||
},
|
||
"hide_input": false,
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.4"
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"2f3d7b0ce8764f598c395fbac737c48c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_ba986e5e4c9b48f88c8346ef03b4b000",
|
||
"IPY_MODEL_aec05ee9a5d1413d831c1f7077d28101"
|
||
],
|
||
"layout": "IPY_MODEL_59bd05eda8644307aa2971b042ca5df9"
|
||
}
|
||
},
|
||
"59bd05eda8644307aa2971b042ca5df9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ba986e5e4c9b48f88c8346ef03b4b000": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "info",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_3eae9a8647dd429a80527cce71c67b05",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_8ca81342939449f0b29abdb07496d439",
|
||
"value": 1
|
||
}
|
||
},
|
||
"aec05ee9a5d1413d831c1f7077d28101": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_3ea8f8bcf14e4aa2bd4e499cff3f9c18",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_dfce7275cc244893a2d968bd69e20d93",
|
||
"value": " 26427392/? [00:20<00:00, 70164856.40it/s]"
|
||
}
|
||
},
|
||
"8ca81342939449f0b29abdb07496d439": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"3eae9a8647dd429a80527cce71c67b05": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"dfce7275cc244893a2d968bd69e20d93": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"3ea8f8bcf14e4aa2bd4e499cff3f9c18": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"768b85b4e742448b817828cc2248995f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_a0d845dfe2ad4ee991f8bca5180ecbcb",
|
||
"IPY_MODEL_20830224ff094525b44b404461c6a511"
|
||
],
|
||
"layout": "IPY_MODEL_36143c2721c74fcdaa0b4625c5991a06"
|
||
}
|
||
},
|
||
"36143c2721c74fcdaa0b4625c5991a06": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a0d845dfe2ad4ee991f8bca5180ecbcb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_847d2b3124fa46848d94eb729649c98e",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_e573242ca86f411ba0296215e5c4b039",
|
||
"value": 1
|
||
}
|
||
},
|
||
"20830224ff094525b44b404461c6a511": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_a37db114e34e402391c0556e59e6ae1b",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_2909afa9e1f7476c8b4c6a49e0453530",
|
||
"value": " 32768/? [00:00<00:00, 81523.42it/s]"
|
||
}
|
||
},
|
||
"e573242ca86f411ba0296215e5c4b039": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"847d2b3124fa46848d94eb729649c98e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2909afa9e1f7476c8b4c6a49e0453530": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"a37db114e34e402391c0556e59e6ae1b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ad4e9182b08541ce967cfa5e31398cce": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_b9fccc870b8c4ad69f26b05ebb667df4",
|
||
"IPY_MODEL_d23eac4f2b514d9c9121cf06ec5c52b9"
|
||
],
|
||
"layout": "IPY_MODEL_f4f5262126664c12ac5377ff39f8e840"
|
||
}
|
||
},
|
||
"f4f5262126664c12ac5377ff39f8e840": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b9fccc870b8c4ad69f26b05ebb667df4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_4ffea4eb6779408bbf90077e3777bc1f",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_8b3b1433cb3545fb9f600613eaf1958a",
|
||
"value": 1
|
||
}
|
||
},
|
||
"d23eac4f2b514d9c9121cf06ec5c52b9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_682b223eca4448ed8bdbefde7250fbbd",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_4ca74d8b14474d7fbc46e072d4afb941",
|
||
"value": " 4423680/? [00:00<00:00, 15282831.16it/s]"
|
||
}
|
||
},
|
||
"8b3b1433cb3545fb9f600613eaf1958a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"4ffea4eb6779408bbf90077e3777bc1f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"4ca74d8b14474d7fbc46e072d4afb941": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"682b223eca4448ed8bdbefde7250fbbd": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ffccb79b5be044369bfeb0a6663c38f2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_fb91d02c5f3e4c7f8bb46231b1154693",
|
||
"IPY_MODEL_c9f23e17d34544e28d89dd90bec62463"
|
||
],
|
||
"layout": "IPY_MODEL_79d6f94d757f4fddb9b9d14ea2a3f874"
|
||
}
|
||
},
|
||
"79d6f94d757f4fddb9b9d14ea2a3f874": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fb91d02c5f3e4c7f8bb46231b1154693": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_fa170bda69c342cdb6d4a8b4eba1b017",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_3385870131e8419ebeec40513f1142ab",
|
||
"value": 1
|
||
}
|
||
},
|
||
"c9f23e17d34544e28d89dd90bec62463": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_c3fa6c5debff46b6a5353c885a0625c2",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a2b63a0bfc8449e1a655d7a3f7181ebf",
|
||
"value": " 8192/? [00:00<00:00, 26820.81it/s]"
|
||
}
|
||
},
|
||
"3385870131e8419ebeec40513f1142ab": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"fa170bda69c342cdb6d4a8b4eba1b017": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a2b63a0bfc8449e1a655d7a3f7181ebf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c3fa6c5debff46b6a5353c885a0625c2": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "view-in-github",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"<a href=\"https://colab.research.google.com/github/PacktPublishing/Hands-On-Computer-Vision-with-PyTorch/blob/master/Chapter03/Impact_of_dropout.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "tQF3S8aqKTvD",
|
||
"outputId": "e38bba6d-679e-42b6-ee02-633c357bfcb6",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 437,
|
||
"referenced_widgets": [
|
||
"2f3d7b0ce8764f598c395fbac737c48c",
|
||
"59bd05eda8644307aa2971b042ca5df9",
|
||
"ba986e5e4c9b48f88c8346ef03b4b000",
|
||
"aec05ee9a5d1413d831c1f7077d28101",
|
||
"8ca81342939449f0b29abdb07496d439",
|
||
"3eae9a8647dd429a80527cce71c67b05",
|
||
"dfce7275cc244893a2d968bd69e20d93",
|
||
"3ea8f8bcf14e4aa2bd4e499cff3f9c18",
|
||
"768b85b4e742448b817828cc2248995f",
|
||
"36143c2721c74fcdaa0b4625c5991a06",
|
||
"a0d845dfe2ad4ee991f8bca5180ecbcb",
|
||
"20830224ff094525b44b404461c6a511",
|
||
"e573242ca86f411ba0296215e5c4b039",
|
||
"847d2b3124fa46848d94eb729649c98e",
|
||
"2909afa9e1f7476c8b4c6a49e0453530",
|
||
"a37db114e34e402391c0556e59e6ae1b",
|
||
"ad4e9182b08541ce967cfa5e31398cce",
|
||
"f4f5262126664c12ac5377ff39f8e840",
|
||
"b9fccc870b8c4ad69f26b05ebb667df4",
|
||
"d23eac4f2b514d9c9121cf06ec5c52b9",
|
||
"8b3b1433cb3545fb9f600613eaf1958a",
|
||
"4ffea4eb6779408bbf90077e3777bc1f",
|
||
"4ca74d8b14474d7fbc46e072d4afb941",
|
||
"682b223eca4448ed8bdbefde7250fbbd",
|
||
"ffccb79b5be044369bfeb0a6663c38f2",
|
||
"79d6f94d757f4fddb9b9d14ea2a3f874",
|
||
"fb91d02c5f3e4c7f8bb46231b1154693",
|
||
"c9f23e17d34544e28d89dd90bec62463",
|
||
"3385870131e8419ebeec40513f1142ab",
|
||
"fa170bda69c342cdb6d4a8b4eba1b017",
|
||
"a2b63a0bfc8449e1a655d7a3f7181ebf",
|
||
"c3fa6c5debff46b6a5353c885a0625c2"
|
||
]
|
||
}
|
||
},
|
||
"source": [
|
||
"from torchvision import datasets\n",
|
||
"import torch\n",
|
||
"data_folder = '/content/' # This can be any directory you want to download FMNIST to\n",
|
||
"fmnist = datasets.FashionMNIST(data_folder, download=True, train=True)"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to /content/FashionMNIST/raw/train-images-idx3-ubyte.gz\n"
|
||
],
|
||
"name": "stdout"
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "2f3d7b0ce8764f598c395fbac737c48c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": []
|
||
}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Extracting /content/FashionMNIST/raw/train-images-idx3-ubyte.gz to /content/FashionMNIST/raw\n",
|
||
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to /content/FashionMNIST/raw/train-labels-idx1-ubyte.gz\n"
|
||
],
|
||
"name": "stdout"
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "768b85b4e742448b817828cc2248995f",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": []
|
||
}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Extracting /content/FashionMNIST/raw/train-labels-idx1-ubyte.gz to /content/FashionMNIST/raw\n",
|
||
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to /content/FashionMNIST/raw/t10k-images-idx3-ubyte.gz\n"
|
||
],
|
||
"name": "stdout"
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "ad4e9182b08541ce967cfa5e31398cce",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": []
|
||
}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Extracting /content/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to /content/FashionMNIST/raw\n",
|
||
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to /content/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz\n",
|
||
"\n",
|
||
"\n"
|
||
],
|
||
"name": "stdout"
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "ffccb79b5be044369bfeb0a6663c38f2",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": []
|
||
}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Extracting /content/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to /content/FashionMNIST/raw\n",
|
||
"Processing...\n",
|
||
"Done!\n",
|
||
"\n"
|
||
],
|
||
"name": "stdout"
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py:469: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:141.)\n",
|
||
" return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)\n"
|
||
],
|
||
"name": "stderr"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "Upbh6zarK2d5"
|
||
},
|
||
"source": [
|
||
"tr_images = fmnist.data\n",
|
||
"tr_targets = fmnist.targets"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "YZBVdvanK34A"
|
||
},
|
||
"source": [
|
||
"val_fmnist = datasets.FashionMNIST(data_folder, download=True, train=False)\n",
|
||
"val_images = val_fmnist.data\n",
|
||
"val_targets = val_fmnist.targets"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "nkis84DbK5YH"
|
||
},
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"%matplotlib inline\n",
|
||
"import numpy as np\n",
|
||
"from torch.utils.data import Dataset, DataLoader\n",
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"device = 'cuda' if torch.cuda.is_available() else 'cpu'"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "jP9feXa2zDUn"
|
||
},
|
||
"source": [
|
||
"### Dropout 0.25"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "I2dYPVTxK7zf"
|
||
},
|
||
"source": [
|
||
"class FMNISTDataset(Dataset):\n",
|
||
" def __init__(self, x, y):\n",
|
||
" x = x.float()/255\n",
|
||
" x = x.view(-1,28*28)\n",
|
||
" self.x, self.y = x, y \n",
|
||
" def __getitem__(self, ix):\n",
|
||
" x, y = self.x[ix], self.y[ix] \n",
|
||
" return x.to(device), y.to(device)\n",
|
||
" def __len__(self): \n",
|
||
" return len(self.x)\n",
|
||
"\n",
|
||
"from torch.optim import SGD, Adam\n",
|
||
"def get_model():\n",
|
||
" model = nn.Sequential(\n",
|
||
" nn.Dropout(0.25),\n",
|
||
" nn.Linear(28 * 28, 1000),\n",
|
||
" nn.ReLU(),\n",
|
||
" nn.Dropout(0.25),\n",
|
||
" nn.Linear(1000, 10)\n",
|
||
" ).to(device)\n",
|
||
"\n",
|
||
" loss_fn = nn.CrossEntropyLoss()\n",
|
||
" optimizer = Adam(model.parameters(), lr=1e-3)\n",
|
||
" return model, loss_fn, optimizer\n",
|
||
"\n",
|
||
"def train_batch(x, y, model, opt, loss_fn):\n",
|
||
" model.train()\n",
|
||
" prediction = model(x)\n",
|
||
" batch_loss = loss_fn(prediction, y)\n",
|
||
" batch_loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
" optimizer.zero_grad()\n",
|
||
" return batch_loss.item()\n",
|
||
"\n",
|
||
"def accuracy(x, y, model):\n",
|
||
" with torch.no_grad():\n",
|
||
" prediction = model(x)\n",
|
||
" max_values, argmaxes = prediction.max(-1)\n",
|
||
" is_correct = argmaxes == y\n",
|
||
" return is_correct.cpu().numpy().tolist()\n"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "VvEH2ZnKLCUf"
|
||
},
|
||
"source": [
|
||
"def get_data(): \n",
|
||
" train = FMNISTDataset(tr_images, tr_targets) \n",
|
||
" trn_dl = DataLoader(train, batch_size=32, shuffle=True)\n",
|
||
" val = FMNISTDataset(val_images, val_targets) \n",
|
||
" val_dl = DataLoader(val, batch_size=len(val_images), shuffle=True)\n",
|
||
" return trn_dl, val_dl"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "XOV367XiLD8c"
|
||
},
|
||
"source": [
|
||
"@torch.no_grad()\n",
|
||
"def val_loss(x, y, model):\n",
|
||
" model.eval()\n",
|
||
" prediction = model(x)\n",
|
||
" val_loss = loss_fn(prediction, y)\n",
|
||
" return val_loss.item()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "WPs8i2C5LFNT"
|
||
},
|
||
"source": [
|
||
"trn_dl, val_dl = get_data()\n",
|
||
"model, loss_fn, optimizer = get_model()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "wm0SC1giLGYk",
|
||
"outputId": "9ab707e7-e5ec-4914-bb9a-b76d20cb413b",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 563
|
||
}
|
||
},
|
||
"source": [
|
||
"train_losses, train_accuracies = [], []\n",
|
||
"val_losses, val_accuracies = [], []\n",
|
||
"for epoch in range(30):\n",
|
||
" print(epoch)\n",
|
||
" train_epoch_losses, train_epoch_accuracies = [], []\n",
|
||
" for ix, batch in enumerate(iter(trn_dl)):\n",
|
||
" x, y = batch\n",
|
||
" batch_loss = train_batch(x, y, model, optimizer, loss_fn)\n",
|
||
" train_epoch_losses.append(batch_loss) \n",
|
||
" train_epoch_loss = np.array(train_epoch_losses).mean()\n",
|
||
"\n",
|
||
" for ix, batch in enumerate(iter(trn_dl)):\n",
|
||
" x, y = batch\n",
|
||
" is_correct = accuracy(x, y, model)\n",
|
||
" train_epoch_accuracies.extend(is_correct)\n",
|
||
" train_epoch_accuracy = np.mean(train_epoch_accuracies)\n",
|
||
"\n",
|
||
" for ix, batch in enumerate(iter(val_dl)):\n",
|
||
" x, y = batch\n",
|
||
" val_is_correct = accuracy(x, y, model)\n",
|
||
" validation_loss = val_loss(x, y, model)\n",
|
||
" val_epoch_accuracy = np.mean(val_is_correct)\n",
|
||
"\n",
|
||
" train_losses.append(train_epoch_loss)\n",
|
||
" train_accuracies.append(train_epoch_accuracy)\n",
|
||
" val_losses.append(validation_loss)\n",
|
||
" val_accuracies.append(val_epoch_accuracy)"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"0\n",
|
||
"1\n",
|
||
"2\n",
|
||
"3\n",
|
||
"4\n",
|
||
"5\n",
|
||
"6\n",
|
||
"7\n",
|
||
"8\n",
|
||
"9\n",
|
||
"10\n",
|
||
"11\n",
|
||
"12\n",
|
||
"13\n",
|
||
"14\n",
|
||
"15\n",
|
||
"16\n",
|
||
"17\n",
|
||
"18\n",
|
||
"19\n",
|
||
"20\n",
|
||
"21\n",
|
||
"22\n",
|
||
"23\n",
|
||
"24\n",
|
||
"25\n",
|
||
"26\n",
|
||
"27\n",
|
||
"28\n",
|
||
"29\n"
|
||
],
|
||
"name": "stdout"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "BXFV4oPSLI76",
|
||
"outputId": "e370cea2-4bc7-469c-8459-e0a4c92c3d0c",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
}
|
||
},
|
||
"source": [
|
||
"for ix, par in enumerate(model.parameters()):\n",
|
||
" if(ix==0):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of weights conencting input to hidden layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix ==1):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of biases of hidden layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix==2):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of weights conencting hidden to output layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix ==3):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of biases of output layer')\n",
|
||
" plt.show() "
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEICAYAAABBBrPDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAddklEQVR4nO3de7QcZZ3u8e8jAURuCZCJkASCkqNGlgJGiMtxBkUhIBqOFwYWmohIDgqOM+rRIGqQywDHowhzlDkoGRJEgUEZMojGDAgMRwMERe7IFolJICQkIYAIGPidP+q3odJ0v9257O6Q/XzW6pWqt96q963q6nq6Lr2jiMDMzKyVV/S6A2ZmtnFzUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRUNyqCQ9C+SvrKBlrWrpCclbZbj10n6xIZYdi7vp5KmbKjlrUW7p0l6VNKSAWzjSUmv6bBuSNpjoPrycjVQ+4ekd0i6b0MvtxcknSzp+4Xpd0nav8W0/SUtKsx7oaTTNkA3G5f7MUk3bujlrqtNLigkPSjpz5KekPSYpF9KOk7SC+saEcdFxKkdLuvdpToR8ceI2CYintsAfX/JDh0RB0fEzPVd9lr2Y1fgc8C4iHj1QLWT2+2B9V3OxvahGijd3D8i4r8i4nUbernNtPsSMNDvb0S8MSKuG6jlbwo2uaBI74uIbYHdgDOBLwIXbOhGJA3Z0MvcSOwKLI+Ipb3uiJl1R/F4FhGb1At4EHh3Q9m+wPPAnjl+IXBaDu8EXAU8BqwA/osqQC/Kef4MPAl8ARgDBHAM8EfghlrZkFzedcAZwM3A48CVwA45bX9gUbP+AhOBZ4G/ZHu/rS3vEzn8CuDLwAJgKTAL2D6n9fdjSvbtUeCkwnbaPudflsv7ci7/3bnOz2c/Lmwy7/XAB3P47dnue3P8AOC2Wt2PA/cAK4E5wG61aQHskcM7Av+R2+wW4DTgxoa6xwH353v1bUDAG4Cngeeyv49l/UOAu4EngMXA5wvb4tjs4xM5zz5Z/obc/o8BdwHvr81zYfbhJznfTcBra9NfD8yl2qfuAw5fi3nfWJv3EeBLHe4fHwNuBP53bu8/AAfXlrs71T77BPCf2Yfvt9gm+1PbV6n2088DtwOrgEuBV9brZj8fzbpH1eZ9oY/1fubwDfne/inX6+8a+tHq/W26/7ZYl5OBy7L+E/lejm92zAC2yvdnZe4L/7NhO+wN/DqXcylwCXksyemHArdR7TO/BN7UyTZs0ucXtlGOnwMspPp83Aq8I8tfDTwF7Firu09ul807/AweT/W5+kPLz8hAHrR78aJJUGT5H4FP1j6o/UFxBvAvwOb5egegZsvixYPxLGDr3Kn6y+pBsRjYM+v8iPwwUgiK2g79/Ybp1/HigeDjQB/wGmAb4MfARQ19+272683AM8AbWmynWVQhtm3O+zvgmFb9bJj3FOCfc/hLwO+Bs2rTzsnhSdnfNwBDqD7Mv2zYSfuD4pJ8vQoYR/WhaAyKq4ChVGc8y4CJzT5UWfYwL36YhpEH/ybr8uF8v95KFTx7UJ2Jbp59/xKwBfAuqoPD62r70HKqLyFDgIuBS3La1tn/o3Pa3lQH0HEdzLtt9v1zwCtzfL8O94+PUQXJscBmwCeBh3hxf/4VVYhsAfw11UFnbYLiZmAXYAeqA89xtbqrgW8CWwJ/S3Xgf11jH5u9X/X9oEVfmr2/LfffJvOfTBU2h+R2OQOY1+IzeCbVl8UdgNHAnf3bIbfbAuAfqfaPD+X27j+W7E31BW6/bGdKLnvLdtuw3ToDH6H6MjUk940lvBjUV5PHthw/mxc/n518Budmf7Zq9R5sqpeemnmIamM0+guwM1XK/iWqa7Pt/gDWyRHxp4j4c4vpF0XEnRHxJ+ArwOH9N7vX01HANyPigYh4EjgROKLhlPFrEfHniPgt8FuqwFhD9uUI4MSIeCIiHgS+AXy0w35cT3UwAPgbqg9e//jf5nSozgDOiIh7ImI18E/AXpJ2a9KfDwLTI+KpiLgbaHbd/cyIeCwi/gj8Atir0Me/AOMkbRcRKyPi1y3qfQL4XxFxS1T6ImIBMIEqjM+MiGcj4lqqoDqyNu8VEXFzrtvFtf4cCjwYEf8aEasj4jdUXxg+3OG8SyLiGxHxdL4/NxXWs9GCiPhuVPfMZlLt2yPyvtNbga/m+twIzF6L5QKcGxEPRcQKqrO/xu3/lYh4JiKupzpbOnwtl9+Rddx/b4yIq3O7XESTz0U6HDg9IlZExELg3Nq0CVQB8a08VlxOdfbbbyrwfyPipoh4Lqp7R8/kfP3abcOmIuL7EbE896dvUAVy/z2kmVRB0r9tjsx1hM4+g2fk+rY6ng2qoBhJdSrf6OtUiftzSQ9ImtbBshauxfQFVDvXTh31smyXXF592UOAEbWy+lNKT1Ed7BrtlH1qXNbIDvvxK+C/SRpBtaPPAkZL2onqW/INWW834Jx8qKD/0p6atDM816O+3Zpt407Wrd8Hqb5BLpB0vaS3tag3muqMqNEuwMKIeL5W1riNWvVnN2C//vXOdT+K6jJBu3lb9adTLyw3Ip7KwW2o1mdFrQza78ctl81Lt//K/GLUb0G2ORDWZf9t7PsrW1yT34WXfn7r0xY3fJGsT98N+FzD+z6aNbfD2uzDL5D0eUn3SFqVy92eF48pV1J9KdodeA+wKiJurvWp3Wew7X4wKIJC0lupNsxLnpzIbySfi4jXAO8HPivpgP7JLRbZ7oxjdG14V6pvt49SnY6/qtavzagOkp0u9yGqN76+7NVU17HXxqPZp8ZlLe5k5jzY3Ap8BrgzIp6luh77WeD3EfFoVl0I/I+IGFp7bRURv2xY5LJcj1G1stF07iXbLc8QJgF/Bfw71TXqZhYCr21S/hBV+NU/I51uo4XA9Q3rvU1EfLLDeVs9Mtxu/yh5GNhB0qtqZWuzjdsZJmnr2viuVNsQGvZ71gzMTjSu93rtv208zEs/v/VpIyWpxfSFVGcj9ff9VRHxw/XpkKR3UN0jPRwYFhFDqe5xCCAinqbavz9CdVZ1UW32Tj6DbferTTooJG0n6VCqa9/fj4g7mtQ5VNIe+eavorpp1v8t8hFaf2hLPiJpXH4oTwEuz1Pe31F9k3mvpM2prhduWZvvEWBMw8Gp7ofAP0raXdI2VKeRl+YpZceyL5cBp0vaNk9DPwu0fNa8ieuBE3jxMtN1DeNQ3fs5UdIbASRtL6l++aXenx8DJ0t6laTXA5PXoi+PAKMkbZHtbCHpKEnbR8RfqK7FP99i3u8Bn5f0FlX2yO1xE9U3vi9I2jyfs38f1b7UzlVUZ1wfzXk3l/RWSW/ocN6dJf2DpC3z/dmvtp6l/aOlvJw2n2obb5FnWO9b2+W08bVc9juoLqH9W5bfBnwg39s9qB4GqWv3OVvj/d1A+28rl1Hts8MkjQI+XZv2K6ovNH+f7+kHqM6g+30XOE7SfrkvbZ2f9W3Xs0/bZrvLgCGSvgps11BnFtV9jfezZlB09BlsZ1MNiv+Q9ARVmp5EdZPt6BZ1x1I9AfIk1Y7wnYj4RU47A/hynrZ9fi3av4jqhuUSqhuSfw8QEauAT1EdnBZTfdOq/5in/4O1XFKza+ozctk3UD3R8jRr7shr49PZ/gNUZ1o/yOV36nqqHfiGFuNExBXAWcAlkh6nujF4cIvlnUB1Or2Eah1/SHV9txPXUj3JskRS/9nMR4EHs93jqC79vERE/BtwOtX6P0F19rFDniW9L/v7KPAdYHJE3NuuMxHxBHAg1XX0h3KdzmLNLwWled+TbS+hehrlnTm53f7RzlHA26hupJ9G9dRNp9u4nSVUT9U8RHXP5bjatjqb6omtR6iup1/cMO/JwMz8nDW7r9Hs/V3f/beVr1FdTvoD8HNqB93cJz5AdUBeAfwd1Rec/unzqR4k+D9U26Iv666vOcDPqL5oLqD63K9xuSgi/h/Vl6Ff55eC/vK1+Qy21P80hNlGRdJZwKsjYkqv+7KpknQpcG9ETF/P5exPdcY+ql1dGziSrgV+EBHf29DL3lTPKOxlRtLrJb0pT9n3pbo8cUWv+7Upyctfr5X0CkkTqR6d/Pde98vWX96H3YfqLHGD21R/WWwvP9tSXW7aheoSxTeonuawDefVVJdKdqS65PnJfHTXXsYkzQQOAz6Tly43fBu+9GRmZiW+9GRmZkWb3KWnnXbaKcaMGdPrbpiZvazceuutj0bE8GbTNrmgGDNmDPPnz+91N8zMXlYkLWg1zZeezMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrGiT+2W2mb3UmGk/6Um7D5753p60axuWzyjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW1FFQSBoq6XJJ90q6R9LbJO0gaa6k+/PfYVlXks6V1Cfpdkn71JYzJevfL2lKrfwtku7Iec6VpCxv2oaZmXVPp2cU5wA/i4jXA28G7gGmAddExFjgmhwHOBgYm6+pwHlQHfSB6cB+wL7A9NqB/zzg2Np8E7O8VRtmZtYlbYNC0vbA3wAXAETEsxHxGDAJmJnVZgKH5fAkYFZU5gFDJe0MHATMjYgVEbESmAtMzGnbRcS8iAhgVsOymrVhZmZd0skZxe7AMuBfJf1G0vckbQ2MiIiHs84SYEQOjwQW1uZflGWl8kVNyim0sQZJUyXNlzR/2bJlHaySmZl1qpOgGALsA5wXEXsDf6LhElCeCcSG715nbUTE+RExPiLGDx8+fCC7YWY26HQSFIuARRFxU45fThUcj+RlI/LfpTl9MTC6Nv+oLCuVj2pSTqENMzPrkrZBERFLgIWSXpdFBwB3A7OB/ieXpgBX5vBsYHI+/TQBWJWXj+YAB0oaljexDwTm5LTHJU3Ip50mNyyrWRtmZtYlQzqs92ngYklbAA8AR1OFzGWSjgEWAIdn3auBQ4A+4KmsS0SskHQqcEvWOyUiVuTwp4ALga2An+YL4MwWbZiZWZd0FBQRcRswvsmkA5rUDeD4FsuZAcxoUj4f2LNJ+fJmbZiZWff4l9lmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK+ooKCQ9KOkOSbdJmp9lO0iaK+n+/HdYlkvSuZL6JN0uaZ/acqZk/fslTamVvyWX35fzqtSGmZl1z9qcUbwzIvaKiPE5Pg24JiLGAtfkOMDBwNh8TQXOg+qgD0wH9gP2BabXDvznAcfW5pvYpg0zM+uS9bn0NAmYmcMzgcNq5bOiMg8YKmln4CBgbkSsiIiVwFxgYk7bLiLmRUQAsxqW1awNMzPrkk6DIoCfS7pV0tQsGxERD+fwEmBEDo8EFtbmXZRlpfJFTcpLbZiZWZcM6bDeX0fEYkl/BcyVdG99YkSEpNjw3eusjQyvqQC77rrrQHbDzGzQ6eiMIiIW579LgSuo7jE8kpeNyH+XZvXFwOja7KOyrFQ+qkk5hTYa+3d+RIyPiPHDhw/vZJXMzKxDbYNC0taStu0fBg4E7gRmA/1PLk0Brszh2cDkfPppArAqLx/NAQ6UNCxvYh8IzMlpj0uakE87TW5YVrM2zMysSzq59DQCuCKfWB0C/CAifibpFuAySccAC4DDs/7VwCFAH/AUcDRARKyQdCpwS9Y7JSJW5PCngAuBrYCf5gvgzBZtmJlZl7QNioh4AHhzk/LlwAFNygM4vsWyZgAzmpTPB/bstA0zM+se/zLbzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK+o4KCRtJuk3kq7K8d0l3SSpT9KlkrbI8i1zvC+nj6kt48Qsv0/SQbXyiVnWJ2larbxpG2Zm1j1rc0bxGeCe2vhZwNkRsQewEjgmy48BVmb52VkPSeOAI4A3AhOB72T4bAZ8GzgYGAccmXVLbZiZWZd0FBSSRgHvBb6X4wLeBVyeVWYCh+XwpBwnpx+Q9ScBl0TEMxHxB6AP2DdffRHxQEQ8C1wCTGrThpmZdUmnZxTfAr4APJ/jOwKPRcTqHF8EjMzhkcBCgJy+Kuu/UN4wT6vyUhtrkDRV0nxJ85ctW9bhKpmZWSfaBoWkQ4GlEXFrF/qzTiLi/IgYHxHjhw8f3uvumJltUoZ0UOftwPslHQK8EtgOOAcYKmlIfuMfBSzO+ouB0cAiSUOA7YHltfJ+9XmalS8vtGFmZl3S9owiIk6MiFERMYbqZvS1EXEU8AvgQ1ltCnBlDs/OcXL6tRERWX5EPhW1OzAWuBm4BRibTzhtkW3MznlatWFmZl2yPr+j+CLwWUl9VPcTLsjyC4Ads/yzwDSAiLgLuAy4G/gZcHxEPJdnCycAc6ieqros65baMDOzLunk0tMLIuI64LocfoDqiaXGOk8DH24x/+nA6U3KrwaublLetA0zM+se/zLbzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkVtg0LSKyXdLOm3ku6S9LUs313STZL6JF0qaYss3zLH+3L6mNqyTszy+yQdVCufmGV9kqbVypu2YWZm3dPJGcUzwLsi4s3AXsBESROAs4CzI2IPYCVwTNY/BliZ5WdnPSSNA44A3ghMBL4jaTNJmwHfBg4GxgFHZl0KbZiZWZe0DYqoPJmjm+crgHcBl2f5TOCwHJ6U4+T0AyQpyy+JiGci4g9AH7Bvvvoi4oGIeBa4BJiU87Rqw8zMuqSjexT5zf82YCkwF/g98FhErM4qi4CROTwSWAiQ01cBO9bLG+ZpVb5joY3G/k2VNF/S/GXLlnWySmZm1qGOgiIinouIvYBRVGcArx/QXq2liDg/IsZHxPjhw4f3ujtmZpuUtXrqKSIeA34BvA0YKmlIThoFLM7hxcBogJy+PbC8Xt4wT6vy5YU2zMysSzp56mm4pKE5vBXwHuAeqsD4UFabAlyZw7NznJx+bURElh+RT0XtDowFbgZuAcbmE05bUN3wnp3ztGrDzMy6ZEj7KuwMzMynk14BXBYRV0m6G7hE0mnAb4ALsv4FwEWS+oAVVAd+IuIuSZcBdwOrgeMj4jkASScAc4DNgBkRcVcu64st2jAzsy5pGxQRcTuwd5PyB6juVzSWPw18uMWyTgdOb1J+NXB1p22YmVn3+JfZZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWVHboJA0WtIvJN0t6S5Jn8nyHSTNlXR//jssyyXpXEl9km6XtE9tWVOy/v2SptTK3yLpjpznXEkqtWFmZt3TyRnFauBzETEOmAAcL2kcMA24JiLGAtfkOMDBwNh8TQXOg+qgD0wH9gP2BabXDvznAcfW5puY5a3aMDOzLmkbFBHxcET8OoefAO4BRgKTgJlZbSZwWA5PAmZFZR4wVNLOwEHA3IhYERErgbnAxJy2XUTMi4gAZjUsq1kbZmbWJWt1j0LSGGBv4CZgREQ8nJOWACNyeCSwsDbboiwrlS9qUk6hjcZ+TZU0X9L8ZcuWrc0qmZlZGx0HhaRtgB8B/xARj9en5ZlAbOC+raHURkScHxHjI2L88OHDB7IbZmaDTkdBIWlzqpC4OCJ+nMWP5GUj8t+lWb4YGF2bfVSWlcpHNSkvtWFmZl3SyVNPAi4A7omIb9YmzQb6n1yaAlxZK5+cTz9NAFbl5aM5wIGShuVN7AOBOTntcUkTsq3JDctq1oaZmXXJkA7qvB34KHCHpNuy7EvAmcBlko4BFgCH57SrgUOAPuAp4GiAiFgh6VTglqx3SkSsyOFPARcCWwE/zReFNszMrEvaBkVE3AioxeQDmtQP4PgWy5oBzGhSPh/Ys0n58mZtmJlZ9/iX2WZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrahsUkmZIWirpzlrZDpLmSro//x2W5ZJ0rqQ+SbdL2qc2z5Ssf7+kKbXyt0i6I+c5V5JKbZiZWXd1ckZxITCxoWwacE1EjAWuyXGAg4Gx+ZoKnAfVQR+YDuwH7AtMrx34zwOOrc03sU0bZmbWRW2DIiJuAFY0FE8CZubwTOCwWvmsqMwDhkraGTgImBsRKyJiJTAXmJjTtouIeRERwKyGZTVrw8zMumhd71GMiIiHc3gJMCKHRwILa/UWZVmpfFGT8lIbLyFpqqT5kuYvW7ZsHVbHzMxaWe+b2XkmEBugL+vcRkScHxHjI2L88OHDB7IrZmaDzroGxSN52Yj8d2mWLwZG1+qNyrJS+agm5aU2zMysi9Y1KGYD/U8uTQGurJVPzqefJgCr8vLRHOBAScPyJvaBwJyc9rikCfm00+SGZTVrw8zMumhIuwqSfgjsD+wkaRHV00tnApdJOgZYABye1a8GDgH6gKeAowEiYoWkU4Fbst4pEdF/g/xTVE9WbQX8NF8U2jAzsy5qGxQRcWSLSQc0qRvA8S2WMwOY0aR8PrBnk/LlzdowM7Pu8i+zzcysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7Oitr+jMLMNY8y0n/S6C13Xy3V+8Mz39qztTY3PKMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzs6KNPigkTZR0n6Q+SdN63R8zs8Fmow4KSZsB3wYOBsYBR0oa19temZkNLhv7/3C3L9AXEQ8ASLoEmATc3dNe2cvaYPyf5gajXr3Pm+L/rLexB8VIYGFtfBGwX2MlSVOBqTn6pKT7BrhfOwGPDnAbG6vBvO4wuNff694BnTXAPRk4u7WasLEHRUci4nzg/G61J2l+RIzvVnsbk8G87jC419/rPjjXHTbyexTAYmB0bXxUlpmZWZds7EFxCzBW0u6StgCOAGb3uE9mZoPKRn3pKSJWSzoBmANsBsyIiLt63C3o4mWujdBgXncY3OvvdR+kFBG97oOZmW3ENvZLT2Zm1mMOCjMzK3JQrCNJp0q6XdJtkn4uaZde96lbJH1d0r25/ldIGtrrPnWLpA9LukvS85IGzeOSg/VP6UiaIWmppDt73ZdeclCsu69HxJsiYi/gKuCrve5QF80F9oyINwG/A07scX+66U7gA8ANve5ItwzyP6VzITCx153oNQfFOoqIx2ujWwOD5qmAiPh5RKzO0XlUv28ZFCLinogY6F/+b2xe+FM6EfEs0P+ndDZ5EXEDsKLX/ei1jfrx2I2dpNOBycAq4J097k6vfBy4tNedsAHV0Z/SsU2Xg6JA0n8Cr24y6aSIuDIiTgJOknQicAIwvasdHEDt1j3rnASsBi7uZt8GWifrbjaYOCgKIuLdHVa9GLiaTSgo2q27pI8BhwIHxCb2Y5y1eN8HC/8pnUHO9yjWkaSxtdFJwL296ku3SZoIfAF4f0Q81ev+2IDzn9IZ5PzL7HUk6UfA64DngQXAcRExKL5lSeoDtgSWZ9G8iDiuh13qGkn/HfhnYDjwGHBbRBzU214NPEmHAN/ixT+lc3qPu9QVkn4I7E/1Z8YfAaZHxAU97VQPOCjMzKzIl57MzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzs6L/Dy8TIBL5zk5NAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZYElEQVR4nO3de7xcZX3v8c/XBLmJJCG7OSEJ2VjSUrQ1eLZIj/aUghy5qIG2IJwKAWMjPdjaU47HoPgSq5TYVunh1YoNggS0QEQ9BKHFcCtSBLqhIeSCsoHE3Eg2hDuaQ8Lv/LGeDSs7M3tm9szsSZ79fb9e89prnvWstX5rZvZ31jyzZkYRgZmZ5eVNnS7AzMxaz+FuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh/suRNI3JH2+Res6SNJLksak63dJ+ngr1p3W98+SZrdqfQ1s98uSnpb0VIV5R0laN8SyLbt920mFb0l6VtIDFeafJemeIZavet9I6pYUksZWmX+hpG8Pv/qqNQ1531jrVbyDrfUkrQYmAduA7cBK4GpgQUS8BhAR5zSwro9HxG3V+kTEz4G3NFf169u7EDgkIj5aWv/xrVh3g3UcBJwHTI+IzY0uX+/tuwt4H3AsMDUiXm504U7cN7br8ZH7yPpQROwHTAfmA58Brmj1RqodlWXgIOCZ4QT7bmY6sHo4wW5vyPj/oC4O9w6IiOcjYjHwEWC2pHcASLpK0pfT9ERJP5T0nKQtkn4s6U2SrqEIuZvSsMv/Lr3UniPp58AdVV5+/6qkByS9IOlGSRPStnZ6ySxptaT3SzoO+CzwkbS9h9P814d5Ul0XSFojabOkqyXtn+YN1DFb0s/TkMrnqt02kvZPy/en9V2Q1v9+YAlwYKrjqiHW8dm0ndWS/qjUXr59x6fbtz8Nf/xQ0tRS37MkPSHpRUlPDlrPxyStSsvdKml6apekS9Jt8IKkRwbu2wo1Hihpcbpv+yT9cWqfA3wT+O20n18cYj//NtXwpKTjS+3l+2ZM6ve0pCeAEwet42BJ/5r2cwkwcdD8IyXdmx6HD0s6atB2viTp39LyP5K0w/JD1D5P0uNpuZWSTk7tb063yW+W+v6KpFckdaXrH5S0NNV0r6TfKvVdLekzkpYBL2s0B3xE+DICF2A18P4K7T8H/iRNXwV8OU1fDHwD2CNdfgdQpXUB3UBQDPPsC+xdahub+twFrAfekfp8D/h2mncUsK5avcCFA31L8++iGBoC+BjQB7yNYijo+8A1g2q7PNX1TmAr8BtVbqergRuB/dKyPwPmVKtz0LJHUQx7fQ3YE/hd4GXg1yvcvgcAfwDsk7b1XeD/pnn7Ai+UlpsMvD1Nz0r7+hsUw5oXAPemeR8AHgTGAUp9Jlep9W7g68BewEygHzg6zTsLuGeI/TwLeBX4Y2AM8CfAhtLjo3zfnAM8CkwDJgB3Dnpc/KR0e/1X4MXS42IK8AxwAsWB4LHpeldpO48Dv5bu27uA+UPcN+tK108BDkzr/Ui6nyaneV8HvlLq+yngpjR9OLAZeE/a99kUj9U9S4/bpWl/9+70/30nLz5y77wNFP90g71KESrTI+LViPhxpEfvEC6MiJcj4hdV5l8TEcujeLn/eeBUpTdcm/RHwNci4omIeAk4Hzht0FHTFyPiFxHxMPAwRcjvINVyGnB+RLwYEauBrwJnNFjP5yNia0T8K3AzcOrgDhHxTER8LyJeiYgXgYsongwGvAa8Q9LeEbExIlak9nOAiyNiVURsA/4KmJmO3l+leKI4lCJoV0XExgr7OQ14L/CZiPhlRCylOFo/s4F9XBMRl0fEdmAhxWNlUoV+pwJ/FxFrI2ILxUHDQB0HAe/mjdvrbuCm0rIfBW6JiFsi4rWIWAL0UoT9gG9FxM/SY24RxRNVTRHx3YjYkNZ7PfAYcESavRA4XZLS9TOAa9L0XOAfI+L+iNgeEQspDhaOLK3+0rS/1f4PRgWHe+dNAbZUaP8biiPEH6XhgXl1rGttA/PXULwiqOtldA0HpvWV1z2WHcOmfHbLK1R+s3diqmnwuqY0UMuzseNY9ZpU3w4k7SPpH9PQzwsUR9LjJI1Jy3+EIsg3SrpZ0qFp0enA/0lDAs9R3HcCpkTEHcDfA/8AbJa0QNJbK9R4ILAlPakMdz9fvz0j4pU0Wek2PZCd7/fyvEq314DpwCkD+5r2930UTyQ71UH1+3Unks4sDa08R/GKcmLan/vTuo5Kt/shwOJSTecNqmkaO97Htf4PRgWHewdJejfFP/ROp7WlI9fzIuJtwIeBv5B0zMDsKqusdWQ/rTR9EMWR5tMUL4n3KdU1BuhqYL0bKP7pyuveBmyqsdxgT6eaBq9rfQPrGC9p30HLb6jQ7zzg14H3RMRbKYYkoAhqIuLWiDiWIsgepRhWgiI4PhER40qXvSPi3rTcpRHxn4HDKIYrPl1h2xuACZL2a2I/67WRne/38rxKt9eAtRSv9sr7um9EzG+moPQq53Lgk8ABETEOWE667ZOFFK8czgBuiIhflmq6aFBN+0TEtaVl/VW3ONw7QtJbJX0QuI5ifPORCn0+KOmQ9NL0eYrTJ19LszdRjG836qOSDpO0D/CXFP802ynGtfeSdKKkPSjGkfcsLbcJ6JZU7fFyLfA/05tzb6EYqrg+DVvULdWyCLhI0n4pBP4CaPS86y+mN+Z+B/ggxXj6YPsBvwCeU/HG8hcGZkiaJGlWCr2twEu8cdt/Azhf0ttT3/0lnZKm3y3pPek2fBn4ZWm58n6uBe4FLpa0V3pDcM4w9rMei4A/kzRV0njg9VeAEbGGYphl4PZ6H/Ch0rLfBj4k6QPpjdm9VLz5PpXm7EsRwP0Aks6mOHIv+zZwMkXAX11qvxw4J93OkrRvetzuh+3A4T6ybpL0IsXRx+co3sg6u0rfGcBtFMHyE+DrEXFnmncxcEF6Wfq/Gtj+NRRvKj5F8Uben0Fx9g7wPyjGfddTBFP57JmBcHxG0kMV1ntlWvfdwJMUofanDdRV9qdp+09QvKL5p7T+ej0FPEtxdPwd4JyIeLRCv7+jeBPwaeA+4F9K895E8aSygWLY5Xcp3rQkIn4AfAW4Lg3nLAcGzlR5K0X4PEsxvPEMxfBaJadTvGG8AfgB8IUY4nMLTbgcuJXifY6HKN7sLvvvFG9ObqF4gns9SNOT0CyKs6X6KR63n6bJ3IiIlRTvpfyE4sDhN4F/G9Rnbao3gB+X2nsp3kj+e4rbuY/iDWYbZODddTOzXYqkK4ENEXFBp2vZHY3ec0DNbJclqRv4fYpTH20YPCxjZrsUSV+iGO76m4h4stP17K48LGNmliEfuZuZZWiXGHOfOHFidHd3d7oMM7PdyoMPPvh0RHRVmrdLhHt3dze9vb2dLsPMbLciaU21eR6WMTPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMlQz3NMX9D+g4pfPVyj9GruKX5J/Mv1U1lJJM1O7JF2q4hfdl0l6V7t3wszMdlTPJ1S3Uvwq+0vpF2bukfTPad6nI+KGQf2Pp/ihiRkUPwJwWfprtlvqnndzR7a7ev6JHdmu5aHmkXsUXkpX90iXob5KchZwdVruPoofHZ48RH8zM2uxusbc0+8nLgU2A0vSr5ND8VuXyyRdImngNzensOOvj6+jsV91NzOzJtUV7hGxPSJmAlOBIyS9AzgfOBR4NzAB+EwjG5Y0V1KvpN7+/v4GyzYzs6E0dLZMRDwH3AkcFxEb09DLVuBbwBGp23pgWmmxqalt8LoWRERPRPR0dVX8xkozMxumes6W6ZI0Lk3vDRwLPDowji5JwEkUP4sFsBg4M501cyTwfERsbEv1ZmZWUT1ny0wGFkoaQ/FksCgifijpDkldgIClwDmp/y3ACUAf8ApwduvLNjOzodQM94hYRoVfII+Io6v0D+Dc5kszM7Ph8idUzcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwyVDPcJe0l6QFJD0taIemLqf1gSfdL6pN0vaQ3p/Y90/W+NL+7vbtgZmaD1XPkvhU4OiLeCcwEjpN0JPAV4JKIOAR4FpiT+s8Bnk3tl6R+ZmY2gmqGexReSlf3SJcAjgZuSO0LgZPS9Kx0nTT/GElqWcVmZlZTXWPuksZIWgpsBpYAjwPPRcS21GUdMCVNTwHWAqT5zwMHVFjnXEm9knr7+/ub2wszM9tBXeEeEdsjYiYwFTgCOLTZDUfEgojoiYierq6uZldnZmYlDZ0tExHPAXcCvw2MkzQ2zZoKrE/T64FpAGn+/sAzLanWzMzqUs/ZMl2SxqXpvYFjgVUUIf+Hqdts4MY0vThdJ82/IyKilUWbmdnQxtbuwmRgoaQxFE8GiyLih5JWAtdJ+jLwH8AVqf8VwDWS+oAtwGltqNvMzIZQM9wjYhlweIX2JyjG3we3/xI4pSXVmZnZsPgTqmZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYZqhrukaZLulLRS0gpJn0rtF0paL2lpupxQWuZ8SX2SfirpA+3cATMz29nYOvpsA86LiIck7Qc8KGlJmndJRPxtubOkw4DTgLcDBwK3Sfq1iNjeysLNzKy6mkfuEbExIh5K0y8Cq4ApQywyC7guIrZGxJNAH3BEK4o1M7P6NDTmLqkbOBy4PzV9UtIySVdKGp/apgBrS4uto8KTgaS5knol9fb39zdcuJmZVVfPsAwAkt4CfA/484h4QdJlwJeASH+/Cnys3vVFxAJgAUBPT080UrTZaNA97+aObHf1/BM7sl1rrbqO3CXtQRHs34mI7wNExKaI2B4RrwGX88bQy3pgWmnxqanNzMxGSD1nywi4AlgVEV8rtU8udTsZWJ6mFwOnSdpT0sHADOCB1pVsZma11DMs817gDOARSUtT22eB0yXNpBiWWQ18AiAiVkhaBKykONPmXJ8pY2Y2smqGe0TcA6jCrFuGWOYi4KIm6jIzsyb4E6pmZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGaoa7pGmS7pS0UtIKSZ9K7RMkLZH0WPo7PrVL0qWS+iQtk/Sudu+EmZntqJ4j923AeRFxGHAkcK6kw4B5wO0RMQO4PV0HOB6YkS5zgctaXrWZmQ2pZrhHxMaIeChNvwisAqYAs4CFqdtC4KQ0PQu4Ogr3AeMkTW555WZmVlVDY+6SuoHDgfuBSRGxMc16CpiUpqcAa0uLrUttg9c1V1KvpN7+/v4GyzYzs6HUHe6S3gJ8D/jziHihPC8iAohGNhwRCyKiJyJ6urq6GlnUzMxqqCvcJe1BEezfiYjvp+ZNA8Mt6e/m1L4emFZafGpqMzOzEVLP2TICrgBWRcTXSrMWA7PT9GzgxlL7memsmSOB50vDN2ZmNgLG1tHnvcAZwCOSlqa2zwLzgUWS5gBrgFPTvFuAE4A+4BXg7JZWbGZmNdUM94i4B1CV2cdU6B/AuU3WZWZmTfAnVM3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLUD3nuZvZKNI97+aObXv1/BM7tu3c+MjdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDNcNd0pWSNktaXmq7UNJ6SUvT5YTSvPMl9Un6qaQPtKtwMzOrrp4j96uA4yq0XxIRM9PlFgBJhwGnAW9Py3xd0phWFWtmZvWpGe4RcTewpc71zQKui4itEfEk0Acc0UR9ZmY2DM2MuX9S0rI0bDM+tU0B1pb6rEttO5E0V1KvpN7+/v4myjAzs8GGG+6XAb8KzAQ2Al9tdAURsSAieiKip6ura5hlmJlZJcMK94jYFBHbI+I14HLeGHpZD0wrdZ2a2szMbAQNK9wlTS5dPRkYOJNmMXCapD0lHQzMAB5orkQzM2tUzR/IlnQtcBQwUdI64AvAUZJmAgGsBj4BEBErJC0CVgLbgHMjYnt7Sjczs2pqhntEnF6h+Yoh+l8EXNRMUWZm1hx/QtXMLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8tQzXCXdKWkzZKWl9omSFoi6bH0d3xql6RLJfVJWibpXe0s3szMKqvnyP0q4LhBbfOA2yNiBnB7ug5wPDAjXeYCl7WmTDMza0TNcI+Iu4Etg5pnAQvT9ELgpFL71VG4DxgnaXKrijUzs/oMd8x9UkRsTNNPAZPS9BRgbanfutS2E0lzJfVK6u3v7x9mGWZmVknTb6hGRAAxjOUWRERPRPR0dXU1W4aZmZUMN9w3DQy3pL+bU/t6YFqp39TUZmZmI2i44b4YmJ2mZwM3ltrPTGfNHAk8Xxq+MTOzETK2VgdJ1wJHARMlrQO+AMwHFkmaA6wBTk3dbwFOAPqAV4Cz21CzmZnVUDPcI+L0KrOOqdA3gHObLcrMzJpTM9zNdgXd827udAlmuxV//YCZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGfLP7JnZLqNTP6e4ev6JHdluOzUV7pJWAy8C24FtEdEjaQJwPdANrAZOjYhnmyvTzMwa0Yphmd+LiJkR0ZOuzwNuj4gZwO3pupmZjaB2jLnPAham6YXASW3YhpmZDaHZcA/gR5IelDQ3tU2KiI1p+ilgUpPbMDOzBjX7hur7ImK9pF8Blkh6tDwzIkJSVFowPRnMBTjooIOaLMPMzMqaOnKPiPXp72bgB8ARwCZJkwHS381Vll0QET0R0dPV1dVMGWZmNsiww13SvpL2G5gG/huwHFgMzE7dZgM3NlukmZk1pplhmUnADyQNrOefIuJfJP07sEjSHGANcGrzZZqZWSOGHe4R8QTwzgrtzwDHNFOUmZk1x18/YGaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmG/H3u1pBOfd+2mTXGR+5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcinQu6GfDqimdXicDezUa+TB0yr55/YlvV6WMbMLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDLUt3CUdJ+mnkvokzWvXdszMbGdtCXdJY4B/AI4HDgNOl3RYO7ZlZmY7a9eHmI4A+iLiCQBJ1wGzgJWt3pA/rWlmtrN2hfsUYG3p+jrgPeUOkuYCc9PVlyT9tE217GomAk93uogOGc37DqN7/0fzvsMQ+6+vNLXe6dVmdOzrByJiAbCgU9vvFEm9EdHT6To6YTTvO4zu/R/N+w6d2f92vaG6HphWuj41tZmZ2QhoV7j/OzBD0sGS3gycBixu07bMzGyQtgzLRMQ2SZ8EbgXGAFdGxIp2bGs3NOqGokpG877D6N7/0bzv0IH9V0SM9DbNzKzN/AlVM7MMOdzNzDLkcG8zSadIWiHpNUlVT4XK8esaJE2QtETSY+nv+Cr9tktami679Rvvte5HSXtKuj7Nv19S98hX2T517P9ZkvpL9/fHO1FnO0i6UtJmScurzJekS9Nts0zSu9pZj8O9/ZYDvw/cXa1Dxl/XMA+4PSJmALen65X8IiJmpsuHR6681qrzfpwDPBsRhwCXAM19hGUX0sDj+PrS/f3NES2yva4Cjhti/vHAjHSZC1zWzmIc7m0WEasiotanb1//uoaI+H/AwNc17O5mAQvT9ELgpA7WMhLquR/Lt8kNwDGSNII1tlOuj+O6RMTdwJYhuswCro7CfcA4SZPbVY/DfddQ6esapnSollaaFBEb0/RTwKQq/faS1CvpPkm78xNAPffj630iYhvwPHDAiFTXfvU+jv8gDUvcIGlahfm5GtH/8459/UBOJN0G/KcKsz4XETeOdD0jaah9L1+JiJBU7bzb6RGxXtLbgDskPRIRj7e6Vtsl3ARcGxFbJX2C4lXM0R2uKUsO9xaIiPc3uYrd9usahtp3SZskTY6Ijenl5+Yq61if/j4h6S7gcGB3DPd67seBPuskjQX2B54ZmfLarub+R0R5X78J/PUI1LWrGNH/cw/L7Bpy/bqGxcDsND0b2OlVjKTxkvZM0xOB99KGr4YeIfXcj+Xb5A+BOyKfTxLW3P9BY8wfBlaNYH2dthg4M501cyTwfGnYsvUiwpc2XoCTKcbWtgKbgFtT+4HALaV+JwA/ozhi/Vyn627Rvh9AcZbMY8BtwITU3gN8M03/F+AR4OH0d06n625yn3e6H4G/BD6cpvcCvgv0AQ8Ab+t0zSO8/xcDK9L9fSdwaKdrbuG+XwtsBF5N//NzgHOAc9J8UZxN9Hh6rPe0sx5//YCZWYY8LGNmliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZ+v9IEuiaCVxL0gAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdQElEQVR4nO3de5gdVZ3u8e9rwkUFSUJihCQQLjlCdEbEFvDojAxoCKCG86g8nEclYDSjox496nGCOBPlojBzvKBnxGEECYgCokhUHIxch3G4NModNC0Gk5AbCUQQQQK/88daGyo7e3fv3b3Tuzvr/TzPfrpq1apVa9Vl/6pW1a5WRGBmZuV6QbcrYGZm3eVAYGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhRt1gUDSNyT9Q4fK2kPS45LG5PHrJL2vE2Xn8n4qaW6nymtjuadJeljS6q24jMcl7d1i3pC079aqy2i1tfYPSYdKWtHP9H6Pof62l6QTJN3YiXqWrNPfNUM1ogKBpGWS/iTpMUmPSvqFpA9Ieq6eEfGBiDi1xbLe1F+eiPh9ROwUEc90oO6flfTtuvKPjIhFQy27zXrsAXwCmBkRL9tay8nr7YGhllPKF8tI2T/ycls6hoaTpOk5AI3twrI7ug+Oxn16RAWC7K0RsTOwJ3AG8PfAuZ1eSDd2uGGyB7A+ItZ2uyJmNnL0+50XESPmAywD3lSXdhDwLPDKPH4+cFoengj8GHgU2AD8Bym4XZjn+RPwOPApYDoQwDzg98ANlbSxubzrgC8AtwB/AK4AJuRphwIrGtUXmA38GXg6L++OSnnvy8MvAD4DPAisBS4AdsnTavWYm+v2MHByP+tplzz/ulzeZ3L5b8ptfjbX4/wG814PvD0Pvz4v9+g8fjhweyXve4H7gEeAq4A9K9MC2DcP7wr8KK+zW4HTgBvr8n4AWJq31b8AAvYHngSeyfV9NOc/CrgXeAxYCXyyn3Xx/lzHx/I8B+b0/fP6fxS4B3hbZZ7zcx1+kue7GdinMn0/YAlpn/o1cGwb876iMu8a4NMt7h8nADcC/zev798BR1bK3Yu0zz4G/DzX4dtN1smhwArSleFaYBVwYl0bTquM/5+c56G8zeu37eK8bW8BTq3btoNeV3V1/n1e7uP58zr6OWb62Rf6cl0WA7vXHV9jK3mvA95H833wfOAbuW2PkY6bPQdbXoO6Vrf9PsA1wHrSsX8RMK6ybb5fN+9XgbMq3wXn5u23knTsjansU/8JfDmXfVrTdbe1v9zb+dAgEFR2kg/W78SkL+1vANvlz18BalRWZeNdALwYeGH9Bs0bZyXwypzn++SDjX4CQR7+LHUHZt3Gfi9pJ90b2An4AXBhXd3+LdfrVcBTwP5N1tMFpCC1c573N8C8ZvWsm/cU4Gt5+NPAb4EzK9NqO9icXN/9gbGkA/IXlXKqXxYX58+LgJnAcrYMBD8GxpGuWNYBsys76411dVwF/FUeHk/+cm/Qlnfm7fVaUmDZl3QluV2u+6eB7YHDSAfzyyv70HrSScZY0oF3cZ724lz/E/O0V5MOzpktzLtzrvsngB3z+MEt7h8nkALF+4ExwAdJX8y1/fm/SEFie+ANpC/m/gLBprw9tyMF1ieA8Q2OodmkgFXb57/TYNtemqe9Mq/vG4e6rhrUeTpbfrk2PWYazH9YXvaBwA7A14Ab+im7ft3X74Pnk/aZv87lnVVpd9vlNahvNf++wJvzciaRAv5X8rTdgD/yfGAYSwqKr8njlwP/mrfFS0nB+m8r9dgEfCTP98Jm9RmJXUONPARMaJD+NGlF7RkRT0fEf0ReA/34bET8MSL+1GT6hRFxd0T8EfgH4NjazeQhehfwpYh4ICIeB04Cjqu7XPtcRPwpIu4A7iAFhM3kuhwHnBQRj0XEMuCLwHtarMf1wBvz8F+Tgmlt/I15OqQz+C9ExH0RsQn4PHCApD0b1OftwMKIeCIi7gUa9XufERGPRsTvgWuBA/qp49PATEkviYhHIuKXTfK9D/iniLg1kr6IeBA4hPTFcUZE/DkiriEFov9ZmffyiLglt+2iSn3eAiyLiG9FxKaI+BXphOCdLc67OiK+GBFP5u1zcz/trPdgRPxbpHtWi0j79uR83+e1wD/m9txIOuPtz9PAKfm4uJJ0dvryBvmOBb5V2ec/W5tQ2bb/mI+Zu9l82w5lXbWilWOmmve8iPhlRDyV875O0vQ2llfvJxFxQy7v5FzetCGU11Deb5dExFMRsQ74EvmYjIhVpMBQW6ezgYcj4jZJk0lB/mN5+6wlnf0fVyn+oYj4Wt4+zb7zRk0gmEK63Kv3z6Qzhp9JekDSghbKWt7G9AdJZ1QTW6pl/3bP5VXLHgtMrqRVn/J5gvRlVm9irlN9WVNarMd/Af8t70QHkK4upkmaSDpzuyHn2xM4K9+0r3W9qcFyJuV2VNdbo3XcSttq3k7awR+UdL2k1zXJN410RVNvd2B5RDxbSatfR83qsydwcK3due3vAl7WwrzN6tOq58qNiCfy4E6k9myopMHA+/H6/OXbqJ5Vu7PlPl/TaNtWpw9lXbWilWOmYd4cONbT+nHRyHPtzuVtyMvpKEmTJV0saaWkPwDfZvPvnEXAu/Pwu0ld3/D81e+qyvr/V9KVwRZt6M+IDwSSXkvamFvchc9nXJ+IiL2BtwEfl3R4bXKTIge6YqhG/D1IZ1YPky7PXlSp1xjSgdJquQ+RNly17E2ky/J2PJzrVF/WylZmzl8mtwEfBe6OiD8DvwA+Dvw2Ih7OWZeTLjHHVT4vjIhf1BW5LrdjaiWtnbOmLdZbPsOfQ9qhf0jqmmhkOal/td5DpOBW3b9bXUfLgevr2r1TRHywxXmbPVI70P7Rn1XABEkvqqR16sx0FVvu8zW1bdts+lDWVb1G66edY2azvJJeTLq/sZJ07ELl+GXzYNVs2zzXbkk7kXolHhpCec18Ps/zFxHxEtKXvSrTfwj8paRXkq7CLsrpy0ldyBMr6/8lEfGKdusyYgOBpJdIegupj/LbEXFXgzxvkbSvJAEbSTdoameBa2h+UPbn3ZJm5oPuFOCyfKn+G2BHSUdL2o7UZ75DZb41wPS6L5+q7wL/W9Jeeaf6PHBJ3VnbgHJdLgVOl7Rz7qr5OOksolXXAx/m+W6g6+rGId17OUnSKwAk7SKpeslfrc8PgM9KepGk/YDj26jLGmCqpO3zcraX9C5Ju0TE06S+8GebzPtN4JOSXqNk37w+biadfX5K0naSDgXeStqXBvJj0hXTe/K820l6raT9W5x3N0kfk7RD3j4HV9rZ3/7RVO7u6iWt4+3zFdJb2y2niUuBEyr7/MLKcuu37UzSAw01Q1lX9daRtnP1mG3nmPkucKKkAyTtkPPeHBHLcnfLStKxPUbSe9n8BGKzfbDiKElvyOmnAjdFxPIhlNfMzqSuu42SppBuED8nIp4ELiPdv7kld6/Wuo1+Bnwxf1++QNI+kt5Im0ZiIPiRpMdI0e5kUn/ZiU3yziA9QfE4qcvj6xFxbZ72BeAz+ZLpk20s/0LSjaLVpBt+/wsgIjYCf0f68qmdZVR/tPO9/He9pEZ92uflsm8gPRHyJOkmzmB8JC//AdKV0ndy+a26nrTz3dBknIi4HDgTuDhfrt4NHNmkvA+Tnl5YTWrjd0lnKq24hvRUz2pJtauR9wDL8nI/QOpu2EJEfA84ndT+x0hnThPyVc5bc30fBr4OHB8R9w9UmYh4DJhF6md9KLfpTDYP+v3N++a87NWkp6T+Jk8eaP8YyLtIT9KsJz0Zcgmtr+OmIuKnwFdI26Ev/636MKk7ZzXpuPhWZd5Br6sG9XiCtC3/Mx+zh9DGMRMRPyfd0/s+6SpnHzbvK38/6Qt2PenJruqVbaN9ENJ+tZDUJfQanu+eGWx5zXyOdJN7I+kJqx80yLMI+Aue7xaqOZ70AMG9pKfNLiPdW2pL7YkEs46RdCbwsoiYO2BmGxRJlwD3R8TCATNb2ySdT3r67jPdrgs890PR+0nH1R86Xf5IvCKwUUbSfpL+MnfPHET6rcbl3a7XtiR3ueyTL/9nkx7v/WG362VbX+5O/Djp0duOBwFId+DNhmpnUnfQ7qT+0S+SfudgnfMyUpfBrqQuyQ/mxzVtG5Zveq8hPRE1e6stx11DZmZlc9eQmVnhRnTX0MSJE2P69OndroaZ2ahy2223PRwRkwbOmYzoQDB9+nR6e3u7XQ0zs1FF0oMD53peS11DksZJukzS/ZLuk/Q6SRMkLZG0NP8dn/NK0lcl9Um6U9KBlXLm5vxL1YV/2GJmZltq9R7BWcC/R8R+pBeh3QcsAK6OiBnA1Xkc0o94ZuTPfOBsAEkTSD/OOJj0TpuFteBhZmbdM2AgkLQL6S2V5wLktx8+SnqOufYmwkXAMXl4DnBBehlk3ASMk7QbcASwJCI2RMQjpPd8b7XHoczMrDWtXBHsRXoPyLck/UrSN/OzrZPzuy4g/bS89kbAKWz+xrsVOa1Z+mYkzZfUK6l33bp17bXGzMza1kogGEt6D8bZEfFq0jtuNnvdc6QfI3TkBwkRcU5E9EREz6RJLd/0NjOzQWolEKwgvXOj9g82LiMFhjW5y4f8t/Y/cley+Wtrp+a0ZulmZtZFAwaCiFgNLJdU++9Gh5PedLeY519JO5fnXymwGDg+Pz10CLAxdyFdBcySND7fJJ6V08zMrIta/R3BR4CL8vu1HyC9FvoFwKWS5pHeg3Fsznsl6b9L9ZHeCX8iQERskHQq6Z+bQ/o3eo3+65iZmQ2jEf2uoZ6envAPyszM2iPptojoaTX/iP5lsZmNLNMX/KQry112xtFdWW4p/NI5M7PCORCYmRXOgcDMrHAOBGZmhXMgMDMrnAOBmVnhHAjMzArnQGBmVjgHAjOzwjkQmJkVzoHAzKxwDgRmZoVzIDAzK5wDgZlZ4RwIzMwK50BgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCtRQIJC2TdJek2yX15rQJkpZIWpr/js/pkvRVSX2S7pR0YKWcuTn/Uklzt06TzMysHe1cEfxNRBwQET15fAFwdUTMAK7O4wBHAjPyZz5wNqTAASwEDgYOAhbWgoeZmXXPULqG5gCL8vAi4JhK+gWR3ASMk7QbcASwJCI2RMQjwBJg9hCWb2ZmHdBqIAjgZ5JukzQ/p02OiFV5eDUwOQ9PAZZX5l2R05qlm5lZF41tMd8bImKlpJcCSyTdX50YESEpOlGhHGjmA+yxxx6dKNLMzPrR0hVBRKzMf9cCl5P6+NfkLh/y37U5+0pgWmX2qTmtWXr9ss6JiJ6I6Jk0aVJ7rTEzs7YNGAgkvVjSzrVhYBZwN7AYqD35Mxe4Ig8vBo7PTw8dAmzMXUhXAbMkjc83iWflNDMz66JWuoYmA5dLquX/TkT8u6RbgUslzQMeBI7N+a8EjgL6gCeAEwEiYoOkU4Fbc75TImJDx1piZmaDMmAgiIgHgFc1SF8PHN4gPYAPNSnrPOC89qtpZmZbi39ZbGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhXMgMDMrnAOBmVnhHAjMzArnQGBmVjgHAjOzwjkQmJkVzoHAzKxwDgRmZoVzIDAzK5wDgZlZ4RwIzMwK50BgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCORCYmRWu5UAgaYykX0n6cR7fS9LNkvokXSJp+5y+Qx7vy9OnV8o4Kaf/WtIRnW6MmZm1r50rgo8C91XGzwS+HBH7Ao8A83L6POCRnP7lnA9JM4HjgFcAs4GvSxoztOqbmdlQtRQIJE0Fjga+mccFHAZclrMsAo7Jw3PyOHn64Tn/HODiiHgqIn4H9AEHdaIRZmY2eK1eEXwF+BTwbB7fFXg0Ijbl8RXAlDw8BVgOkKdvzPmfS28wz3MkzZfUK6l33bp1bTTFzMwGY8BAIOktwNqIuG0Y6kNEnBMRPRHRM2nSpOFYpJlZ0ca2kOf1wNskHQXsCLwEOAsYJ2lsPuufCqzM+VcC04AVksYCuwDrK+k11XnMzKxLBrwiiIiTImJqREwn3ey9JiLeBVwLvCNnmwtckYcX53Hy9GsiInL6cfmpor2AGcAtHWuJmZkNSitXBM38PXCxpNOAXwHn5vRzgQsl9QEbSMGDiLhH0qXAvcAm4EMR8cwQlm9mZh3QViCIiOuA6/LwAzR46icingTe2WT+04HT262kmZltPf5lsZlZ4RwIzMwK50BgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhXMgMDMrnAOBmVnhHAjMzArnQGBmVjgHAjOzwjkQmJkVzoHAzKxwDgRmZoVzIDAzK5wDgZlZ4RwIzMwKN2AgkLSjpFsk3SHpHkmfy+l7SbpZUp+kSyRtn9N3yON9efr0Slkn5fRfSzpiazXKzMxa18oVwVPAYRHxKuAAYLakQ4AzgS9HxL7AI8C8nH8e8EhO/3LOh6SZwHHAK4DZwNcljelkY8zMrH0DBoJIHs+j2+VPAIcBl+X0RcAxeXhOHidPP1yScvrFEfFURPwO6AMO6kgrzMxs0Fq6RyBpjKTbgbXAEuC3wKMRsSlnWQFMycNTgOUAefpGYNdqeoN5qsuaL6lXUu+6devab5GZmbWlpUAQEc9ExAHAVNJZ/H5bq0IRcU5E9EREz6RJk7bWYszMLGvrqaGIeBS4FngdME7S2DxpKrAyD68EpgHk6bsA66vpDeYxM7MuaeWpoUmSxuXhFwJvBu4jBYR35GxzgSvy8OI8Tp5+TURETj8uP1W0FzADuKVTDTEzs8EZO3AWdgMW5Sd8XgBcGhE/lnQvcLGk04BfAefm/OcCF0rqAzaQnhQiIu6RdClwL7AJ+FBEPNPZ5piZWbsGDAQRcSfw6gbpD9DgqZ+IeBJ4Z5OyTgdOb7+aZma2tfiXxWZmhXMgMDMrnAOBmVnhHAjMzArnQGBmVjgHAjOzwjkQmJkVzoHAzKxwDgRmZoVzIDAzK5wDgZlZ4RwIzMwK50BgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMytcK/+z2MxGkOkLftLtKtg2xlcEZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCORCYmRXOgcDMrHADBgJJ0yRdK+leSfdI+mhOnyBpiaSl+e/4nC5JX5XUJ+lOSQdWypqb8y+VNHfrNcvMzFrVyhXBJuATETETOAT4kKSZwALg6oiYAVydxwGOBGbkz3zgbEiBA1gIHAwcBCysBQ8zM+ueAQNBRKyKiF/m4ceA+4ApwBxgUc62CDgmD88BLojkJmCcpN2AI4AlEbEhIh4BlgCzO9oaMzNrW1v3CCRNB14N3AxMjohVedJqYHIengIsr8y2Iqc1S69fxnxJvZJ6161b1071zMxsEFoOBJJ2Ar4PfCwi/lCdFhEBRCcqFBHnRERPRPRMmjSpE0WamVk/WgoEkrYjBYGLIuIHOXlN7vIh/12b01cC0yqzT81pzdLNzKyLWnlqSMC5wH0R8aXKpMVA7cmfucAVlfTj89NDhwAbcxfSVcAsSePzTeJZOc3MzLqolf9H8HrgPcBdkm7PaZ8GzgAulTQPeBA4Nk+7EjgK6AOeAE4EiIgNkk4Fbs35TomIDR1phZmZDdqAgSAibgTUZPLhDfIH8KEmZZ0HnNdOBc3MbOvyL4vNzArnQGBmVjgHAjOzwjkQmJkVzoHAzKxwDgRmZoVzIDAzK5wDgZlZ4RwIzMwK50BgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhXMgMDMrnAOBmVnhHAjMzArnQGBmVrgBA4Gk8yStlXR3JW2CpCWSlua/43O6JH1VUp+kOyUdWJlnbs6/VNLcrdMcMzNrVytXBOcDs+vSFgBXR8QM4Oo8DnAkMCN/5gNnQwocwELgYOAgYGEteJiZWXcNGAgi4gZgQ13yHGBRHl4EHFNJvyCSm4BxknYDjgCWRMSGiHgEWMKWwcXMzLpgsPcIJkfEqjy8Gpich6cAyyv5VuS0ZulbkDRfUq+k3nXr1g2yemZm1qoh3yyOiACiA3WplXdORPRERM+kSZM6VayZmTUx2ECwJnf5kP+uzekrgWmVfFNzWrN0MzPrssEGgsVA7cmfucAVlfTj89NDhwAbcxfSVcAsSePzTeJZOc3MzLps7EAZJH0XOBSYKGkF6emfM4BLJc0DHgSOzdmvBI4C+oAngBMBImKDpFOBW3O+UyKi/ga0mZl1gVIX/8jU09MTvb293a6G2YgyfcFPul2FYiw74+huV2FQJN0WET2t5vcvi83MCudAYGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhXMgMDMr3IA/KDOzxvw8v20rfEVgZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeEcCMzMCudAYGZWOAcCM7PCORCYmRXOgcDMrHAOBGZmhXMgMDMrnAOBmVnhHAjMzArnf0xjo5r/OYzZ0PmKwMyscA4EZmaFG/auIUmzgbOAMcA3I+KM4a6DdZ67aMxGr2ENBJLGAP8CvBlYAdwqaXFE3Duc9TAza0U3T3CWnXH0sC1ruK8IDgL6IuIBAEkXA3OAbSoQ+OzYzEaT4Q4EU4DllfEVwMHVDJLmA/Pz6OOSfj1MddsaJgIPd7sSHbKttGVbaQdsO23ZVtoBHWyLzhzS7Hu2k3nEPT4aEecA53S7Hp0gqTcierpdj07YVtqyrbQDtp22bCvtgNHbluF+amglMK0yPjWnmZlZlwx3ILgVmCFpL0nbA8cBi4e5DmZmVjGsXUMRsUnSh4GrSI+PnhcR9wxnHYbZNtHFlW0rbdlW2gHbTlu2lXbAKG2LIqLbdTAzsy7yL4vNzArnQGBmVjgHgg6S9M+S7pd0p6TLJY1rkm+2pF9L6pO0YLjr2QpJ75R0j6RnJTV9HE7SMkl3SbpdUu9w1rEVbbRjNGyTCZKWSFqa/45vku+ZvD1ulzRiHsYYaB1L2kHSJXn6zZKmD38tW9NCW06QtK6yHd7XjXq2LCL86dAHmAWMzcNnAmc2yDMG+C2wN7A9cAcws9t1b1DP/YGXA9cBPf3kWwZM7HZ9h9KOUbRN/glYkIcXNNq/8rTHu13Xwaxj4O+Ab+Th44BLul3vIbTlBOD/dbuurX58RdBBEfGziNiUR28i/U6i3nOv2YiIPwO112yMKBFxX0SM5l91Ay23Y1RsE1KdFuXhRcAxXaxLu1pZx9X2XQYcLknDWMdWjZb9pWUOBFvPe4GfNkhv9JqNKcNSo60jgJ9Jui2/HmQ0Gi3bZHJErMrDq4HJTfLtKKlX0k2SRkqwaGUdP5cnn1BtBHYdltq1p9X95e25m/gySdMaTB8xRtwrJkY6ST8HXtZg0skRcUXOczKwCbhoOOvWrlba0oI3RMRKSS8Flki6PyJu6FwtB9ahdowI/bWlOhIRIanZs9975m2yN3CNpLsi4redrqv160fAdyPiKUl/S7rSOazLdWrKgaBNEfGm/qZLOgF4C3B45M7COiPmNRsDtaXFMlbmv2slXU66bB7WQNCBdoyKbSJpjaTdImKVpN2AtU3KqG2TByRdB7ya1KfdTa2s41qeFZLGArsA64enem0ZsC0RUa33N0n3d0Ysdw11UP6nO58C3hYRTzTJts28ZkPSiyXtXBsm3Sy/u7u1GpTRsk0WA3Pz8Fxgi6sdSeMl7ZCHJwKvZ2S85r2VdVxt3zuAa5qcTHXbgG3JgbrmbcB9w1i/9nX7bvW29AH6SH2Ht+dP7QmI3YErK/mOAn5DOks7udv1btKW/0Hq+3wKWANcVd8W0lMTd+TPPSOxLa20YxRtk12Bq4GlwM+BCTm9h/Tf/gD+O3BX3iZ3AfO6Xe/+1jFwCunECWBH4Hv5OLoF2LvbdR5CW76Qj4k7gGuB/bpd5/4+fsWEmVnh3DVkZlY4BwIzs8I5EJiZFc6BwMyscA4EZmaFcyAwMyucA4GZWeH+P0zmzbRqjAOGAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAXvUlEQVR4nO3dfbQkdX3n8fcHBhBkEHHuURiYGTmgAdkAOiKuIbARThBZSI6Y4IqCgZ0VY9SIuwIqKpsETY5kYyAiAcKDRkkAyURgESIsuPI0sDxP1BF5GBhgeGbkQUY++0f9LjZt39vd93bfvvz4vM7pc6urflX1vdXVn67+VXW3bBMRES9964y6gIiIGIwEekREJRLoERGVSKBHRFQigR4RUYkEekREJRLos4CkkyR9bkDLWiBpjaR1y/3LJR02iGWX5V0k6eBBLa+P9f6ZpIck3d9h2h6SVk4y78C27zCp8Q+SHpV07ajrmS5Jd0rac9R1vJzMGXUBtZN0J/BaYC3wS+B24EzgZNvPA9j+cB/LOsz2pRO1sX03sPH0qn5hfV8AtrF9UMvy3zWIZfdZxwLgCGCh7Qf7nb/X7TsL/BawF7Cl7Z8PcsGdHsvZtLwYjByhz4z/bHsusBD4EvBp4NRBr0RSrS/QC4CHpxLmLzELgTsHHeYvJxU/B3pjO7ch3oA7gT3bxu0CPA/sUO6fDvxZGZ4HfBd4DHgEuJLmhfesMs/TwBrgfwCLAAOHAncDV7SMm1OWdzlwHHAt8ATwL8BmZdoewMpO9QJ7A78Anivru6lleYeV4XWAzwJ3AQ/SvPN4VZk2XsfBpbaHgM9Msp1eVeZfXZb32bL8Pcv//Hyp4/QO8+4BrASOLuu5E3h/y/TW7fvqsn1XA4+W4S1b2h4C3AE8CfysbTl/BCwv811M844BQMBfl23wBHDL+GPbodYtgKXlsV0B/Ncy/lDgGZp3cWuAL3aYd7LtPdXHcmD7xmT7Ps0+fxXNfr0KOAFYv0w7EfhK27xLgT9t2WbnlsfsZ8DHWtp9ATgH+Eb5Hw4b9XN+pHkz6gJqv9Eh0Mv4u4HDy3Br4BwHnASsV267Aeq0LH4VmmcCrwQ2pHOg3wvsUNqcC3yjTJvwSVuGvzDetmX65fwq0P+IJpS2punmOQ84q622vy917Qg8C2w3wXY6swTK3DLvj4FDJ6qzbd49aLq0jgc2AHYHfg68scP2fQ3wHmCjsq5/Bs4v015ZQmF8vs2BN5Xh/cv/uh1NV+VngR+Wab8LXA9sShPu2wGbT1DrFcDfAa8AdqIJqd8p0w4BfjDJ/znZ9p7qYzmwfWOyfR94C7Br2XaLaF4YP1Gm7QLcB6xT7s8DnqLpqlynbNtjgPXL/34H8LstdTwH/F5pu+Gon/OjvKXLZXTuAzbrMP45miBZaPs521e67LmT+ILtn9t+eoLpZ9m+1c1b+c8BfzB+0nSa3g8cb/sO22uAo4AD2972ftH207ZvAm6iCfYXKbUcCBxl+0nbdwJfAT7QZz2fs/2s7f8DXAD8QXsD2w/bPtf2U7afBP6c5gVg3PPADpI2tL3K9m1l/IeB42wvt70W+AtgJ0kLaR6zucBv0Lz4Lre9qsP/uRXwDuDTtp+xfSNwCvDBHv+/XrZ3v4a1b7yI7ettX217bXl8v07Z7ravBR4H3lmaHwhcbvsB4K3AmO1jbf/C9h00BwkHtiz+Ktvn235+kufAy0ICfXTm07ztbvdXNEdh35N0h6Qje1jWPX1Mv4vmyH9eT1VObouyvNZlz6E5shrXelXKU3Q+YTuv1NS+rPl91PKoX9z3fFep70UkbSTp65LukvQEzRHzppLWLfP/IU14r5J0gaTfKLMuBP5G0mOSxrvDBMy3/X2aLoQTgQclnSxpkw41bgE8Ul5IpvJ/9rK9+zWsfeNFJL1B0ncl3V+2+1+0recMYPwE60E0XYzQbPctxrd72fZH8+L/udv+/7KRQB8BSW+leRL/oH1aOUI9wvbWwH7AJyWNH7lMdKTe7Qh+q5bhBTRHlA/RdEts1FLXusBYH8u9j+YJ17rstcADXeZr91CpqX1Z9/axjFdLemXb/Pd1aHcE8EbgbbY3AX67jBeA7Ytt70XzLunfaY4GoQmN/2Z705bbhrZ/WOb7qu23ANsDbwD+e4d13wdsJmnuFP/Pybb3VB/LYe0b7b5Gsz23Ldv9aMo2L74B7C9pR5ouq/PL+HuAn7Vt97m295lGLdVKoM8gSZtI2hf4Nk3/4y0d2uwraRtJonkb+kuabgBonrhbT2HVB0naXtJGwLHAObZ/SdNP/QpJ75a0Hk2/8AYt8z0ALJI00X7yLeBPJb1e0sY0R11nly6JnpVa/gn4c0lzSzfGJ2me5P34oqT1Je0G7EvTP95uLs1J1sckbQZ8fnyCpNdK2r+8MDxLc8JvfNufBBwl6U2l7askvbcMv1XS28o2/DnNyc3naWP7HuCHwHGSXiHpN2lOhvb6f062vaf6WA5r32g3l+b8xJryrufw1om2VwLX0RyZn9vSdXIt8KSkT0vaUNK6knYoB0XRJoE+M/5V0pM0RxufoTl596EJ2m4LXEoTJlcBf2f7sjLtOOCz5a3np/pY/1k0JwbvpzkZ9zEA248DH6Hpx72XJoxaP6AzHogPS7qhw3JPK8u+gubqg2eAP+mjrlZ/UtZ/B807l38sy+/V/TRXn9wHfBP4sO1/79Duf9GcpH0IuBr43y3T1qF5IbmPpktld0rw2P4O8GXg26XL4FZg/Jr8TWiO5B+l6bZ4mKbrrJP30ZwUvA/4DvB5T/K5gjYTbu9pPJbD2jfafQr4LzRXD/09cHaHNmcA/4FfdbeMv9jvS3MC+Wc0j9spNFdFRZvxqyci4mVG0uU07xRPGXUtAJJ+m+bdysIeLgSIDnKEHhEjV7p1Pg6ckjCfugR6RIyUpO1oPnC0OU2XWExRulwiIiqRI/SIiEqM7Its5s2b50WLFo1q9RERL0nXX3/9Q7bHOk0bWaAvWrSIZcuWjWr1EREvSZLummhaulwiIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqETXQC9f83mtpJsk3Sbpix3abCDpbEkrJF0jadEwio2IiIn1coT+LM1vHu5I8xWWe0vata3NoTS/GLMNzY/lfnmwZUZERDddA92NNeXu+A8Xt38BzP4032UMzS9wv7P8QENERMyQnj4pWn5+6npgG+BE29e0NZlP+V0/22slPU7z6+oPtS1nCbAEYMGCBdOrPCKqsOjIC0ay3ju/9O6RrHeYejopavuXtncCtgR2kbTDVFZm+2Tbi20vHhvr+FUEERExRX1d5WL7MeAyYO+2SfdSfmxW0hyan4d6eBAFRkREb3q5ymVM0qZleENgL5pf7261FDi4DB8AfD+/OhIRMbN66UPfHDij9KOvA/yT7e9KOhZYZnspcCpwlqQVND+ue+DQKo6IiI66Brrtm4GdO4w/pmX4GeC9gy0tIiL6kU+KRkRUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUomugS9pK0mWSbpd0m6SPd2izh6THJd1YbscMp9yIiJjInB7arAWOsH2DpLnA9ZIusX17W7srbe87+BIjIqIXXY/Qba+yfUMZfhJYDswfdmEREdGfvvrQJS0Cdgau6TD57ZJuknSRpDdNMP8SScskLVu9enXfxUZExMR6DnRJGwPnAp+w/UTb5BuAhbZ3BP4WOL/TMmyfbHux7cVjY2NTrTkiIjroKdAlrUcT5t+0fV77dNtP2F5Thi8E1pM0b6CVRkTEpHq5ykXAqcBy28dP0OZ1pR2SdinLfXiQhUZExOR6ucrlHcAHgFsk3VjGHQ0sALB9EnAAcLiktcDTwIG2PYR6IyJiAl0D3fYPAHVpcwJwwqCKioiI/uWTohERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUomugS9pK0mWSbpd0m6SPd2gjSV+VtELSzZLePJxyIyJiInN6aLMWOML2DZLmAtdLusT27S1t3gVsW25vA75W/kZExAzpeoRue5XtG8rwk8ByYH5bs/2BM924GthU0uYDrzYiIibUyxH6CyQtAnYGrmmbNB+4p+X+yjJuVdv8S4AlAAsWLOiv0oiXgUVHXjCS9d75pXePZL2jNKptDcPb3j2fFJW0MXAu8AnbT0xlZbZPtr3Y9uKxsbGpLCIiIibQU6BLWo8mzL9p+7wOTe4Ftmq5v2UZFxERM6SXq1wEnAost338BM2WAh8sV7vsCjxue9UEbSMiYgh66UN/B/AB4BZJN5ZxRwMLAGyfBFwI7AOsAJ4CPjT4UiMiYjJdA932DwB1aWPgjwdVVERE9C+fFI2IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqETXQJd0mqQHJd06wfQ9JD0u6cZyO2bwZUZERDdzemhzOnACcOYkba60ve9AKoqIiCnpeoRu+wrgkRmoJSIipmFQfehvl3STpIskvWmiRpKWSFomadnq1asHtOqIiIDBBPoNwELbOwJ/C5w/UUPbJ9tebHvx2NjYAFYdERHjph3otp+wvaYMXwisJ2netCuLiIi+TDvQJb1OksrwLmWZD093uRER0Z+uV7lI+hawBzBP0krg88B6ALZPAg4ADpe0FngaONC2h1ZxRER01DXQbb+vy/QTaC5rjIiIEconRSMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRAI9IqISCfSIiEok0CMiKpFAj4ioRNdAl3SapAcl3TrBdEn6qqQVkm6W9ObBlxkREd30coR+OrD3JNPfBWxbbkuAr02/rIiI6FfXQLd9BfDIJE32B85042pgU0mbD6rAiIjozZwBLGM+cE/L/ZVl3Kr2hpKW0BzFs2DBgimvcNGRF0x53um680vvHsl68z/PrFH9zxHTMaMnRW2fbHux7cVjY2MzueqIiOoNItDvBbZqub9lGRcRETNoEIG+FPhgudplV+Bx27/W3RIREcPVtQ9d0reAPYB5klYCnwfWA7B9EnAhsA+wAngK+NCwio2IiIl1DXTb7+sy3cAfD6yiiIiYknxSNCKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEgn0iIhKJNAjIiqRQI+IqEQCPSKiEj0FuqS9Jf1I0gpJR3aYfoik1ZJuLLfDBl9qRERMZk63BpLWBU4E9gJWAtdJWmr79ramZ9v+6BBqjIiIHvRyhL4LsML2HbZ/AXwb2H+4ZUVERL96CfT5wD0t91eWce3eI+lmSedI2qrTgiQtkbRM0rLVq1dPodyIiJjIoE6K/iuwyPZvApcAZ3RqZPtk24ttLx4bGxvQqiMiAnoL9HuB1iPuLcu4F9h+2Paz5e4pwFsGU15ERPSql0C/DthW0uslrQ8cCCxtbSBp85a7+wHLB1diRET0outVLrbXSvoocDGwLnCa7dskHQsss70U+Jik/YC1wCPAIUOsOSIiOuga6AC2LwQubBt3TMvwUcBRgy0tIiL6kU+KRkRUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJBHpERCUS6BERlUigR0RUIoEeEVGJngJd0t6SfiRphaQjO0zfQNLZZfo1khYNutCIiJhc10CXtC5wIvAuYHvgfZK2b2t2KPCo7W2Avwa+POhCIyJicr0coe8CrLB9h+1fAN8G9m9rsz9wRhk+B3inJA2uzIiI6Ea2J28gHQDsbfuwcv8DwNtsf7Slza2lzcpy/6elzUNty1oCLCl33wj8qMMq5wEPdRg/G8zW2lJX/2Zrbamrf7O1tmHVtdD2WKcJc4awsgnZPhk4ebI2kpbZXjxDJfVlttaWuvo3W2tLXf2brbWNoq5eulzuBbZqub9lGdexjaQ5wKuAhwdRYERE9KaXQL8O2FbS6yWtDxwILG1rsxQ4uAwfAHzf3fpyIiJioLp2udheK+mjwMXAusBptm+TdCywzPZS4FTgLEkrgEdoQn+qJu2SGbHZWlvq6t9srS119W+21jbjdXU9KRoRES8N+aRoREQlEugREZUYeaBLeq+k2yQ9L6njJT6StpJ0maTbS9uPz5baSrtJvxphCHVtJukSST8pf189Qbu/LPUvl/TVYX/Yq4+6Fkj6Xqnr9pn4qoheayttN5G0UtIJs6EuSTtJuqo8ljdL+sMh1jNrv+ajh9o+WfanmyX9m6SFs6GulnbvkeTJsmTabI/0BmxH8yGjy4HFE7TZHHhzGZ4L/BjYfpbUti7wU2BrYH3gpmHXBvwlcGQZPhL4coc2/xH4v6W+dYGrgD1GXVeZdjmwVxneGNhoBh7Lnmor0/8G+EfghNlQF/AGYNsyvAWwCth0CLV03ZeBjwAnleEDgbOHvY36qO0/je9LwOEzUVuvz/+SW1cAV0+UJYO4jfwI3fZy250+MdraZpXtG8rwk8ByYP5sqI3evhph0Fq/auEM4Pc6tDHwCpqdbANgPeCBUddVvgdoju1LAGyvsf3UkOvqqbZS31uA1wLfm4GaeqrL9o9t/6QM3wc8CHT8pOA0zeav+eham+3LWvalq2k+MzPyuor/SfMdV88Ms5iRB3q/ylu8nYFrRlvJC+YD97TcX8nwX2xea3tVGb6fJoBexPZVwGU0R3OrgIttLx91XTRHm49JOk/S/5P0V+UL4Iata22S1gG+AnxqBurpua5WknaheZH+6RBq6WVffqGN7bXA48BrhlDLVGprdShw0VAranStS9Kbga1sXzDsYmbko/+SLgVe12HSZ2z/Sx/L2Rg4F/iE7SdmU22DNlldrXdsW9KvXXsqaRuaLqPxo5RLJO1m+8pR1kWzz+1G86J8N3A2cAjNZxmmZQC1fQS40PbKQR50DqCu8eVsDpwFHGz7+YEVWBlJBwGLgd1nQS3rAMfT7ONDNyOBbnvP6S5D0no0Yf5N2+dNv6rGAGrr5asR+jZZXZIekLS57VXlSf5gh2a/D1xte02Z5yLg7cC0An0Ada0EbrR9R5nnfGBXBhDoA6jt7cBukj5C07e/vqQ1tqd1onsAdSFpE+ACmgONq6dTzyT6+ZqPlZrZr/no6XkmaU+aF8rdbT87C+qaC+wAXF4OEl4HLJW0n+1lgy7mJdHlUvroTgWW2z5+1PW06eWrEQat9asWDgY6vZO4G9hd0pzyYrg7zbmHUdd1HbCppPE+4N8Bbh9yXT3VZvv9thfYXkTT7XLmdMN8EHWV/eo7pZ5zhljLbP6aj661SdoZ+Dqwn+2OL4wzXZftx23Ps72o7FdXl/oGHubjKxzpjeZIciXwLM1Ju4vL+C1o3v4C/BbNSb6bgRvLbZ/ZUFu5vw/NlTc/pTmCGnZdrwH+DfgJcCmwWRm/GDjFvzr7/nWaEL8dOH421FXu71Uey1uA04H1Z0ttLe0PYWaucunlsTwIeK5l378R2GlI9fzavgwcSxNC0Jxo/2dgBXAtsPWwt1EftV1anqfj22jpbKirre3lDPEql3z0PyKiEi+JLpeIiOgugR4RUYkEekREJRLoERGVSKBHRFQigR4RUYkEekREJf4/N52hZcoe5GgAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "G-XKZdlYDITb",
|
||
"outputId": "53d3618b-5700-4540-b360-6b222b6eeed8",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 337
|
||
}
|
||
},
|
||
"source": [
|
||
"epochs = np.arange(30)+1\n",
|
||
"import matplotlib.ticker as mtick\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import matplotlib.ticker as mticker\n",
|
||
"%matplotlib inline\n",
|
||
"plt.subplot(211)\n",
|
||
"plt.plot(epochs, train_losses, 'bo', label='Training loss')\n",
|
||
"plt.plot(epochs, val_losses, 'r', label='Validation loss')\n",
|
||
"#plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))\n",
|
||
"plt.title('Training and validation loss with dropout')\n",
|
||
"plt.xlabel('Epochs')\n",
|
||
"plt.ylabel('Loss')\n",
|
||
"plt.legend()\n",
|
||
"plt.grid('off')\n",
|
||
"plt.show()\n",
|
||
"plt.subplot(212)\n",
|
||
"plt.plot(epochs, train_accuracies, 'bo', label='Training accuracy')\n",
|
||
"plt.plot(epochs, val_accuracies, 'r', label='Validation accuracy')\n",
|
||
"#plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))\n",
|
||
"plt.title('Training and validation accuracy with dropout')\n",
|
||
"plt.xlabel('Epochs')\n",
|
||
"plt.ylabel('Accuracy')\n",
|
||
"#plt.ylim(0.8,1)\n",
|
||
"plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) for x in plt.gca().get_yticks()]) \n",
|
||
"plt.legend()\n",
|
||
"plt.grid('off')\n",
|
||
"plt.show()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACgCAYAAAAB6WsAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2dd3hUVfr4Py8E6UVAkSIBlLIgJVSVIqD+FHVBEBXMClkWCxZERQUbWNiirF8buosoFtBgW9aCq9JxUVdApAlSTBBBEBSSgAGSvL8/zk0yhEwyk8wwmcn7eZ77zNxzzz33fW857z3ve+45oqoYhmEY5ZcKkRbAMAzDiCxmCAzDMMo5ZggMwzDKOWYIDMMwyjlmCAzDMMo5ZggMwzDKOWYIogwR+UhERoY6byQRkRQRuSAM5aqInOn9/4eIPBBI3hIcJ1FEPimpnEWU21dEdoS63NIgIk1FJENEKhaRpzTnsszpXB6Ii7QA5QERyfBZrQYcBrK99RtUdXagZanqgHDkjXVU9cZQlCMizYDvgUqqmuWVPRsI+BpGM6q6HaiRuy4ii4FZqjojYkKdAEQkCRitqr0iLUs4MENwAlBV3wcnBXdDzS+YT0TicisXwzCOxZ6P8GGuoQiS2wwWkXtE5CdgpoicLCIfiMjPIvKr97+Jzz6LRWS09z9JRD4Tkale3u9FZEAJ8zYXkaUiki4i80VkmojM8iN3IDI+IiL/9cr7RETq+2y/VkRSRWSfiNxXxPnpISI/+bohRGSwiKzx/ncXkc9FZL+I7BKRZ0XkJD9lvSwij/qs3+Xts1NERhXIe6mIfC0iaSLyg4hM9tm81Pvd77lIzsk9tz77nysiX4nIAe/33EDPTVGIyO+8/feLyHoRGeiz7RIR2eCV+aOIjPfS63vXZ7+I/CIiy0TkuOdeRB4SkWe8/5VE5KCIPO6tVxWRTBGpKyLNPNdPnIhMAXoDz3rn4lmfIi8Qkc3ecaeJiPjRqap3bX4VkQ1AtwLbU7znYw1w0DvuQE///d75+F2B/BO9c/GriMwUkSo+268TkS3euXhPRBp56Xl6FbhWo73y/wGc4+m5P5DrFU2YIYg8pwF1gXjgetw1memtNwV+A571uzf0ADYB9YHHgBf9PXTF5H0d+B9QD5gMXFvEMQOR8Rrgj8CpwElAbsXUFnjeK7+Rd7wmFIKqfgkcBPoXKPd17382cLunzznA+cBNRciNJ8PFnjwXAi2BgvGJg8AIoA5wKTBGRC73tvXxfuuoag1V/bxA2XWBD4GnPd2eAD4UkXoFdDju3BQjcyXgfeATb79bgdki0trL8iLOzVgTOAtY6KXfCewATgEaAPcChY0rswTo6/3vBvzko+s5wCZV/cV3B1W9D1gG3OKdi1t8Nl/mldMBuAq4yI9qk4AzvOUioLCY1nDcdagDtADeAMZ5Os0D3i/wApDolXUG0Aq4H0BE+gN/8eRpCKQCyX7k8tXzW+BG4HNPzzrF7RNtmCGIPDnAJFU9rKq/qeo+VX1HVQ+pajowBTiviP1TVfUFVc0GXsHd4A2CySsiTXEP7YOqekRVPwPe83fAAGWcqarfqepvwJtAJy99KPCBqi5V1cPAA9458McbuIoAEakJXOKloaorVfULVc1S1RTgn4XIURhXefKtU9WDOMPnq99iVV2rqjmqusY7XiDlgquwNqvqa55cbwAbgd/75PF3boribJxv/q/eNVoIfIB3boCjQFsRqaWqv6rqKp/0hkC8qh5V1WVa+ABjnwMtPYPVB2dYGotIDU/3JQHqn8tfVXW/F1NYVISOVwFTVPUXVf0BZ0AL8rSq/uCdr6uBD1X1U1U9CkwFqgLn+uR/1sv/C+7ezD1HicBLqrrKu/cm4t7ymwWpW8xhhiDy/KyqmbkrIlJNRP4pznWShnNF1BH/vTR+yv2jqoe8vzWCzNsI+MUnDeAHfwIHKONPPv8P+cjUyLdsryLe5+9YuLf/ISJSGRgCrFLVVE+OVp7b4ydPjj/jWgfFcYwMuDdDX/16iMgica6vA7i3wYDcN17ZqQXSUoHGPuv+zk2xMquqr9H0LfcKnJFMFZElInKOl/44sAX4RES2iciEwgr3KtkVuEq/D67iXw70pGSGIFAdi7wWHr7bjzm/3vn4gWPPb8HyGvnZNwN37/nuWy4xQxB5Cr6d3Qm0Bnqoai3ym+f+3D2hYBdQV0Sq+aSdXkT+0si4y7ds75j1/GVW1Q24h3cAx7qFwLmYNgItPTnuLYkMOPeWL6/jWkSnq2ptnH84t9zihuvdiXOZ+dIU+DEAuYor9/QC/v28clX1K1UdhHMbzcW1NFDVdFW9U1VbAAOBO0TkfD/HWIJzwyUAX3nrFwHdyY+NFKS0wxcXdy0KHuOY8+u5Nk/n2PNbsLydfvatjrv3fsS5A8H16svlND8yxBxmCMoeNXE+9/2ev3lSuA/ovWGvACaLyEne2+Tvi9ilNDK+DVwmIr08v+7DFH8fvg7chjM4bxWQIw3IEJE2wJgAZXgTSBKRtp4hKih/TVwLKVNEuuMMUC4/41xZLfyUPQ9oJSLXeIHNq4G2ODdOafgS92Z9txfM7Yu7RsneNUsUkdqeuyTNkxERuUxEzvQqzAO4uIo/V9wSXGxkg6oeARYDo4HvVfVnP/vsxv+5CIQ3gYniOiA0wcU+ist/qYic78VN7sR1x17uk+dmEWni3Zv3AXO89DeAP4pIJ6+F+WfgS1VN8fT7EfiDiFQU14HgjAJ6NhE/nRGiHTMEZY8ncT7PvcAXwH9O0HETcUHBfcCjuIfnsJ+8JZZRVdcDN+Mq913Ar7hgZlHk+ugXqupen/TxuEo6HXiB/Ae+OBk+8nRYiHObLCyQ5SbgYRFJBx7Ee7v29j2E8zv/1+u1cnaBsvfhAqV34s7l3cBlBeQOGq9i/j2uZbQXeA4YoaobvSzXAimei+xG3PUEFwyfD2Tg4gDPqeoiP4dZjruuuW//G4BM/LcGAJ4Chno9dArz7xfHQ7gW3/e4QPhrRWVW1U3AH4BncOfh98DvvfOTy+teWduArbj7Ga/L9gPAO7h77wxgmM9+1wF34a5bO441LguB9cBPIlKqa1kWEZuYxigMEZkDbFTVsLdIDCNUSBHf6Rj+sRaBAYCIdBORM0Skgte9chDO12wYRoxjXxYbuZwGvIsLnu0Axqjq15EVyTCME4G5hgzDMMo55hoyDMMo55ghMAzDKOdEXYygfv362qxZs2PSDh48SPXq1SMjUBiINX0g9nSKNX0g9nSKNX2gdDqtXLlyr6qeUuhGVY2qpUuXLlqQRYsWHZfmy6xZqvHxqiLud9asIrNHnOL0iUZiTadY00c19nSKNX1US6cTsEL91KtR1yIIltmz4frr4ZA3ik5qqlsHSEz0v59hGEZ5IeZjBPfdl28Ecjl0yKUbhmEY5cAQbN8eXLphGEZ5I+ZdQ02bOndQYemGYQTG0aNH2bFjB5mZmcVnLiPUrl2bb7/9NtJihJRAdKpSpQpNmjShUqVKAZcb84ZgypRjYwQA1aq5dMMwAmPHjh3UrFmTZs2a4X8CvLJFeno6NWvWjLQYIaU4nVSVffv2sWPHDpo3bx5wuTHvGkpMhOnTIT4eRNzv9OkWKDaMYMjMzKRevXpRYwTKKyJCvXr1gm65xXyLAFylbxW/YZQOMwLRQUmuU8y3CAzDiH727dtHp06d6NSpE6eddhqNGzfOWz9y5EiR+65YsYKxY8cWe4xzzz232DyBsHjxYi677LKQlHWiKBctAsMwTiyzZ7su2tu3u44ZU6aUrlVer149Vq9eDcDkyZOpUaMG48ePz9uelZVFXFzh1VnXrl3p2rVrscdYvnx5sXliFWsRGIYRUnI/4kxNBdX8jzhnzw7tcZKSkrjxxhvp0aMHd999N//73/8455xzSEhI4Nxzz2Xz5s3AsW/okydPZtSoUfTt25cWLVrw9NP5k6rVqFEjL3/fvn0ZOnQobdq0ITExEfVGaZ43bx5t2rShS5cujB07ttg3/19++YXLL7+cDh06cPbZZ7NmzRoAlixZkteiSUhIID09nV27dtGnTx86derEWWedxbJly0J7worAWgSGYYSUoj7iDHWsbseOHSxfvpyKFSuSlpbGsmXLiIuLY/78+Tz00EP8+9//Pm6fjRs3smjRItLT02ndujVjxow5rqvl119/zfr162nUqBE9e/bkv//9L127duWGG25g6dKlNG/enOHDhxcr36RJk0hISGDu3LksXLiQESNGsHr1aqZOncq0adPo2bMnGRkZVKlShenTp3PRRRdx3333kZ2dzaGCJzGMmCEwDCOknMiPOK+88koqVqwIwIEDBxg5ciSbN29GRDh8uPApty+99FIqV65M5cqVOfXUU9m9ezdNmjQ5Jk/37t3z0jp16kRKSgo1atSgRYsWed0yhw8fzvTp04uU77PPPuOdd94BoH///uzbt4+0tDR69uzJHXfcQWJiIkOGDKFJkyZ069aNUaNGcfToUS6//HI6depUqnMTDGF1DYnIxSKySUS2iMiEQrYnicjPIrLaW0aHUx7DMMKPv481w/ERp+9InA888AD9+vVj3bp1vP/++34NQeXKlfP+V6xYkaysrBLlKQ0TJkxgxowZ/Pbbb/Ts2ZONGzfSp08fli5dSuPGjUlKSuLVV18N6TGLImyGQEQqAtOAAUBbYLiItC0k6xxV7eQtM8Ilj2EYJ4YpU9xHm76ciI84Dxw4QOPGjQF4+eWXQ15+69at2bZtGykpKQDMmTOn2H169+7NbC84snjxYurXr0+tWrXYunUr7du355577qFbt25s3LiR1NRUGjRowHXXXcfo0aNZtWpVyHXwRzhbBN2BLaq6TVWPAMm4CdENw4hhIvUR5913383EiRNJSEgI+Rs8QNWqVXnuuee4+OKL6dKlCzVr1qR27dpF7jN58mRWrlxJhw4dmDBhAq+88goATz75JGeddRYdOnSgUqVKDBgwgMWLF9OxY0cSEhKYM2cOt912W8h18Iu/8alLuwBDgRk+69cCzxbIkwTsAtYAbwOnF1duSeYjiDZiTR/V2NMp1vRRLVqnDRs2nDhBQkRaWlrIy0xPT1dV1ZycHB0zZow+8cQTIT9GUQSqU2HXiyLmIwjb5PUiMhS4WFVHe+vXAj1U9RafPPWADFU9LCI3AFerav9CyroeuB6gQYMGXZKTk4/ZnpGRkdf1KxaINX0g9nSKNX2gaJ1q167NmWeeeYIlKh3Z2dl5geRQ8eyzz/LGG29w5MgROnTowDPPPEO1gn6wMBKoTlu2bOHAgQPHpPXr12+lqhb+QYU/C1HaBTgH+NhnfSIwsYj8FYEDxZVrLYLoJNZ0ijV9VK1FEA2Eq0UQzhjBV0BLEWkuIicBw4D3fDOISEOf1YFAbI0ZaxiGEQWE7TsCVc0SkVuAj3Fv+y+p6noReRhnmd4DxorIQCAL+AUXMzAMwzBOIGH9oExV5wHzCqQ96PN/Is5lZBiGYUQIG2vIMAyjnGOGwDCMMk+/fv34+OOPj0l78sknGTNmjN99LrnkElasWJH3f//+/cflmTx5MlOnTi3y2HPnzmXDhg156w8++CDz588PRvxCKUvDVZshMAyjzDN8+HAKdhtPTk4OaOA3cKOG1qlTp0THLmgIHn74YS644IISlVVWMUNgGEaZZ+jQoXz44Yd5k9CkpKSwc+dOevfuzZgxY+jatSvt2rVj0qRJhe7frFkz9u7dC8CUKVNo1aoVvXr1YtOmTXl5XnjhBbp160bHjh254oorOHToEMuXL+e9997jrrvuolOnTmzdupWkpCTefvttABYsWEBCQgLt27dn1KhReeMbNWvWjEmTJtG5c2fat2/Pxo0bi9Qv0sNV2+ijhmEEx7hx4E0SEzI6dYInn/S7uW7dunTv3p2PPvqIQYMGkZyczFVXXYWIMGXKFOrWrUt2djbnn38+a9asoUOHDoWWs3LlSpKTk1m9ejVZWVl07tyZLl26ADBkyBCuu+46AO6//35efPFFbr31VgYOHMhll13G0KFDjykrMzOTpKQkFixYQKtWrRgxYgTPP/8848aNA6B+/fqsWrWK5557jqlTpzJjhv+h1AIdrvro0aO89NJLIR+uuvy0CHbtgqVL3UwZhmFEHb7uIV+30Jtvvknnzp1JSEhg/fr1x7hxCrJs2TIGDx5MtWrVqFWrFgMHDszbtm7dOnr37k379u2ZPXs269evL1KeTZs20bx5c1q1agXAyJEjWbp0ad72IUOGANClS5e8ger88dlnn3HttdcChQ9X/fTTT7N//37i4uLo1q0bM2fOZPLkyaxdu5aaNWsWWXYglJ8WwXPPwaOPwtlnwz33wMCBUKH82EHDCBlFvLmHk0GDBnH77bezatUqDh06RJcuXfj++++ZOnUqX331FSeffDJJSUlkZmaWqPykpCTmzp1Lx44defnll1m8eHGp5M0dyro0w1hPmDCBSy+9lHnz5tGzZ0/efffdvOGqP/zwQ5KSkrjjjjsYMWJEqWQtPzXhvffCtGmwezcMHgzt2sHMmVDMxNeGYZQNatSoQb9+/Rg1alReayAtLY3q1atTu3Ztdu/ezUcffVRkGX369GHu3Ln89ttvpKen8/777+dtS09Pp2HDhhw9ejRv6GiAmjVrkp6eflxZrVu3JiUlhS1btgDw2muvcd5555VIt0CHq/7uu+/CMlx1+TEEVavCTTfBd9/BG29A5cowahS0aAFPPAGFXGjDMMoWw4cP55tvvskzBLnDNrdp04ZrrrmGnj17Frl/586dufrqq+nYsSMDBgygW7duedseeeQRevToQc+ePWnTpk1e+rBhw3j88cdJSEhg69ateelVqlRh5syZXHnllbRv354KFSpw4403lkivQIervvDCC8MzXLW/QYjK6hKyQedyclT/8x/Vvn1VQbVOHdX771fdvTv4skJMeRvQLBqJNX1UbdC5aCAaB50r24jARRfBokXw5ZfQv7+bQik+Hm6+GXbujLSEhmEYJ4Tyawh86d4d3nkHvv3WTaP0wgvQsSP85z+RlswwDCPsmCHwpXVrmDED1qyBhg1hwAAXZA7DtHeGYRhlBTMEhdGmjXMXXXcd/OUv0K8f7NgRaakMI6KofYMTFZTkOpkh8EfVqm7G7Vmz4Ouv3ZePxXRNM4xYpUqVKuzbt8+MQRlHVdm3bx9VqlQJar/y80FZSUlMhK5d4cor4ZJLYMIEeOQRiLNTZ5QfmjRpwo4dO/j5558jLUrAZGZmBl0hlnUC0alKlSo0adIkqHKtNivA7Nlw332wfTs0beo6EiUmtnauonHj4K9/hc8+c98iBHmyDSNaqVSpEs2bN4+0GEGxePFiEhISIi1GSAmXTuYa8mH2bLj+ekhNdUMSpaa69dmzca6if/7Traxeba4iwzBihoAMgYhUF5EK3v9WIjJQRCqFV7QTz333QcGB/A4dcul5XHMNrFgBjRs7V9Ftt8FXX0F29gmV1TAMI1QE2iJYClQRkcbAJ8C1wMvhEipSbN8eYHrr1vDFF3DDDfD00+47hFNOgaFD4R//AJ/P0APm8GFYuxaSkzl1/nzrsmoYxgkj0BiBqOohEfkT8JyqPiYiIR6QPPI0bercQYWlH0fVqq7Sf/hhWLAA5s+HTz91H6YBNG8OF1wAF17ovlquV8+lHz3qxjtav/7YZfPmvFZFW3DlzZwJv/tdOFQ1DMPII2BDICLnAInAn7y0iuERKXJMmeJiAr7uoWrVXLpfTj0Vhg93i6qr0HONwpw57itlERdTOHIENm3Kf9uvUAHOOMONhHrFFe63XTs2vPUWbZ9/HhIS4KGH4M47rZeSUT5RdV/8L1vm5hNZs8Y9pLfeGmnJYopAa5dxwETgX6q6XkRaAIvCJ1ZkSEx0v8f3GgqwABFo1cotN93kKvwVK5xhWLwYqld38yB4FT6tW7uWRQH2/PILbW+5xZUxYYJrZbz8MrRtGypVDaNskpXlvttZtix/2bfPbWvYEE47DcaOdU33xx6zOUVCRECGQFWXAEsAvKDxXlUdG07BIkViYhAVf3HExbmJcM4+G+6/P7h9GzSAt9+Gt95yg+Dltg7Gj7fWgRFbbN0Kr7/uKv3PP4eMDJd+xhnuxal3b+jTxw0Zn5MDt98Of/87/Pije0HyJoCJWlTdS2QECahGEZHXgRuBbOAroJaIPKWqj4dTuHKPCFx1FfTt64zBxIn5rYN27Yrff+9eWLnS9Wras8cZkx493BAa0fomtXu3e2Ncvx7OPRfOOSfSEhklZd8+N2vgtGmuJdC+PYwc6Sr9Xr2gUaPj96lYEZ56Ck4/He6+G376Cf71L6hT58TLX1pSUuCPf3Reg4suchNmXXppRHQJ9NWyraqmiUgi8BEwAVgJFGkIRORi4ClcPGGGqv7VT74rgLeBbqq6IlDhyw2nnupaBm+95dxFnTvDpEnuQchtHezfD6tWuUp/xQq3+M6TWr06HDzo/teqBd26OaPQo4fr9XTaaSdcrSJRdf65VatcxZ/7W3B48PPPhwcegBLODAVAZiYkJ8Orr0Lduu4NtFcvNwJttLe+ysDb5nEcPgzPPuuMQFoa/OlPMHly4RV/YYjAXXe5LtxJSe56zZvnjEM0oAqvvQa33OLWhwzJ72gSF+fGNhs8GAYNCvyclF6m4ieDAdYDlYC3gPO8tG+K2acisBVoAZwEfIMzKAXz1cR1T/0C6FqcLCGbmKaUzJqlGh+vKuJ+Z80KXdlF6rNnj+pVV7nJdDp3Vh0+XLVlS7eeu7Ro4fI89pjqokWq+/erZmerbtigOnOm6pgxbt+4uPx9mjZVvfJK1alTVT//XPXIkdApVJxOqqpZWarz56vedZfq+eer1q2bL1uFCqpt26r+4Q+qf/+702nHDtXHH1dt0MDl6d1b9ZNP3IRDgZKaqjphgmq9eq6MVq1UmzXLP26NGqoXXqj60EOqCxaoZmQErk+kycxUHTlStWFD1SeeUD10qNhdwq5TTo7qnDmqzZu783vxxapr15auzAULVGvVUm3cWHXNmmM2lclrtHev6tChTv9evVS3bXPp2dmqX3yhes897j7MvQd79FD9y19UN25U1dLpRBET0wRqCMYCPwLzAAHigWXF7HMO8LHP+kRgYiH5ngQuBRZHiyGYNUu1WrVj695q1UJnDALS5623VBs1Uj39dNXBg1WnTFH9+GN3owXKoUOqn33mKterrz62EqxWzVXIDz3kKt4AKpKiKFSnnBzV5ctVb701v0I/6STVLl1UR49Wfe45Z5QOHixah6eecuci98H54AP/BiEnx1Uegwc7A1Ohgvu/YEH+Pj/8oJqcrHrzzaodOzprD85wdu+uescduv7ee1U/+sjJv2GD6s6dTpZgDFG42LdPtU8fJ3NCgvtt1Eh12jRnIPwQ1ufov/9VPftsJ0v79u5eDRXffOP0q11bdeHCvORi9fn1V9U331S94QbVESPcPTdmjOrYsarjx6tOnKj64IOqjz6q+re/OYM6Z45qenrJ5Pz4Y2eYK1VylXtWVuH5cnLcPTVlimrXrvnP5O9+p2sfeaRkx9YQGIJCd4S4YrYPxbmDctevBZ4tkKcz8I73P2oMQXz8sUYgd4mPD035AesTjkrnp59U337bPQydOuVXgpUqqfbs6R6Ojz5SPXAgqGLzdMrJcQ/uhAn5hqdyZdUhQ9xDWVSlXxSZmarPP59/cTp3Vn33Xfempeoe3uefV23Xzm2vV8/JkJJSfNn796vOm6d6772ugq1cufAbIPc8nXKKa6V17ap6wQWq113nKpF581S//z5fpnCwebN7ozzpJNXXX3dpixa5t8/clt+MGYW2+MLyHG3Zkv8G3LCh6osv+q8AS0Nqqms1nnSS6htvqGoh+uTkuBbI3/7mrmPFik6u2rXdeWnYULV+fdfCqFo1f3vBpVo11xL/4IPAWs6HDrmXHa8y11WrgtNt+3bVZ55R7d9fV//tb8Ht60NRhkDc9qIRkdrAJKCPl7QEeFhVDxSxz1DgYlUd7a1fC/RQ1Vu89QrAQiBJVVNEZDEwXguJEYjI9cD1AA0aNOiSnJx8zPaMjAxq1KhRrB6hon//81A93u8qoixcuKTU5Z9ofYoiLiODWmvXUmfNGmqvWUPNTZuokJ2NVqjAwfh4jtSvz5G6dTlcrx5HTj6ZI/XqcaRu3bzf7GrVAMjZvJnmX3zBqQsWUD01Fa1QgV+7dGF3//7s7dWL7BDpK1lZNPjkE+Jnz6bqzp1ktGjBgbPOosGCBcQdPEh6y5b8OHgwe/r3J6eEvU3kyBF061ZqqRKXkUFcRgYVMzKIO3gwbz0udz09nao//shJB/IflewqVTh0+uluiY93S9OmHGrSBK1U8pFbaq1dS3uvd9q6Rx/lQPv2+RtVOXnFCpq/9BK1Nm7kt0aNSBk5kt3nn+8CsITuvpOsLGqtW8epS5bQ8IMP0Lg4tg8bxg9XXUVOId2lQ0VcejpnPfAAdb75hi1jxrBxwABqxcVx8tdfU++LL6j75ZdU2bMHgPQzz+SXHj3Y16MH6W3bohX9fBaVk4NkZ1MhKwvJyqL6tm00WLCAU5YsoVJaGkdr1WJP377sueACDrRrd1wnjBrffcfv/vxnqqemsmPIELZdf32J7zso3TXq16/fSlXtWuhGfxbCdwHeAR7C+ftb4IzCu8XsU6RrCKgN7AVSvCUT2EkxrQJrEUSYjAzny3/wQdWBA1W7dXPuqUqVCj8p1au77bnrvXs7l8+ePeGV8+hR1ddeU23Txrl0hg937okQtaKCvkY//6y6dKnq9Omqt9/u/OMFb6TatVUfeCA4914uycmupdKypep33/nPl5Oj+t57rrWX+4Y6Z45qdnbp7rvt251ugwer1qyZ70r705+c2+xEkZmZF0NLa9nStRBy4z2DB6u+8IKLL5WWw4fdeRw2zLUecltb99zjYhVZWap//rM7Bw0bhswVFukYwepA0gpsjwO2Ac3JDxa3KyL/4uKMgJYRQ1AmYgRljexsV4GtXav66aeqr77qgtW3366amKhbbrzRVRaRkKuU8Y3CCNk1OnjQuQpmz1a94op84zl+vOquXcXvn5PjfMm5RkVZKfMAAAyfSURBVDZQI5Kd7VyAua6yDh10e25ngdmznTtp40bVtLTC98/MdC8E48fnlwHO6F93nXPLBek+DBnZ2ar33usMwR13ODmLiI2UmvR09/APGJDvTsrtgDB0aMkMux8ibQg+B3r5rPcEPg9gv0uA73C9h+7z0h4GBhaSN2oMgWoEew1FKbGmU9j0WbdONTHRBbErV3YB69TUwvMeOaI6apR7jBMTS1bZZWW5ir9TJ83yF/uoUcO1NM47z70BX3aZM1a5wf3zz3cGZN26shEs94jIPbdnjwvKDxqk+sorIT8fkTYEHb03+lw3ztdAh0D2DfVSVgxBMARrNMq6PiUh1nQKuz6bNzu3SqVK+S6WzZvzt//6q6uAwbnpQlDhLFq40AXGN2xwvahee8216saNc73K+vRRPfNMZxRuusm5Rkrag+YEEGv3nGr4DEGgQ0x8A3QUkVreepqIjAPWBLJ/eSZ3spvcgexyJ7uBEA5lYcQeZ54JM2bAgw/C44+7wQtnzoRhw9zXt7ff7gY4fOUVGDEiNMcUgdq13WKj3pYrghpnQFXTVDXNW70jDPLEHAFNdmMY/mjaFJ55xn0lfued8O9/u+EIdu6ETz4JnREwyjWlGXCmjH23XjYJeLIbwyiK005zo22mpsL//Z+bQ7tv30hLZcQIpTEExX+AYBQ+qY2f9NmzoVkz951Cs2beXMmG4Uu9ejBunBvq3DBCRJGGQETSRSStkCUdOEGjIUU3U6a4yW18KWyym9xYQmoqqEpeLMGMgWEY4aZIQ6CqNVW1ViFLTVWN8mEZTwyJiTB9OsTHu1hcfLxbLxgotliCYRiRwirzE0Agk91YLMEwjEgRpbOTxB7BxBIgP55QoQIWTzAMo1SYISgjBBpLgILxBCyeYBhGqTBDUEY4NpagfmMJEFw8wVoOhmEUhxmCMkRiovtuaOHCJaSk+I8rBBpPsJaDYRiBYIYgCgk0nmA9kQzDCAQzBFFIoPGEYHsimRvJMMonZgiikEC/TQj2q2ZzIxlG+cQMQZSSG0/IycFvPCGYnkgWgDaM8osZghgm0JYDWADaMMozZghinEBaDhC+ALQNpGcYZR8zBAYQngC0DaRnGNGBGQIDCE8A2uIOhhEdmCEw8gh1ANriDoYRHZghMIIimAB0uOMO1nowjNBghsAImkAD0OGPOxTdejCDYRiBYYbACBuBDqQXjriDuZsMI3DMEBhhJZCB9MIRdzB3k2EEjhkCI+KEI+4QbndTIN9FmHExooWwGgIRuVhENonIFhGZUMj2G0VkrYisFpHPRKRtOOUxyi6hjjuE391U9HcR5poyoomwGQIRqQhMAwYAbYHhhVT0r6tqe1XtBDwGPBEueYzYINDWQ6TdTfYNhRFNhLNF0B3YoqrbVPUIkAwM8s2gqmk+q9UBDaM8RowQSOsh0u6mcH1DEajRMONiBEM4DUFj4Aef9R1e2jGIyM0ishXXIhgbRnmMckYk3U3h+IYiUKNRUuMSyvGgzBBFF6IanpdwERkKXKyqo731a4EeqnqLn/zXABep6shCtl0PXA/QoEGDLsnJycdsz8jIoEaNGiHWIHLEmj5Q9nWaP/9UZsxowZ49lTn11MOMHr2NCy7Yc1yeqVNbc/hwxby0ypWzGT9+U4nz9u9/HqpynDwiysKFS45JGzbsbHbvrnJc3gYNMklO/iLofCXRqbhzFGyZ4aSs33MloTQ69evXb6Wqdi10o6qGZQHOAT72WZ8ITCwifwXgQHHldunSRQuyaNGi49KimVjTRzV2dJo1SzU+XlUkR+Pj3XrxedVv3vh4VffefuwSH398XpHC84qULF8wx581S7VatWPzVKtWep3CSazcc76URidghfqpV8PpGvoKaCkizUXkJGAY8J5vBhFp6bN6KbA5jPIYRqkJ5LuIgnlDNXZToO6mYFxY4QiUB9t1N1AXUrDxERv6PHDCZghUNQu4BfgY+BZ4U1XXi8jDIjLQy3aLiKwXkdXAHcBxbiHDiGWCCWoHajTCYVyCqdwDLTPY7zeCj48UP/S5Bd89/DUVyupirqHoJNZ0ipQ+gbibgs0XiMsnGHdPOMoMNG845AzGLZabP5BzXxLC5RqKeMUe7GKGIDqJNZ1iSZ9A4h7hqAyDiWVEMj4SDuMS6Dk6Pm/xsSl/mCGIMmJNH9XY0ynW9FEtXqdQv+lGukUQLcH3YI2wP4oyBDbWkGEYARHodxmBEkwsI5LxkUgH34MdQLEkmCEwDCMiBBMoDzRvoEOfQ/QE34PJW1LMEBiGETGCaWUEmjfQLr4lMy6h6dkVjq/US4MZAsMwyi3BGpdA8oV6UMRg8pYUMwSGYRghJNSDIgbj7iopcaEryjAMwwiUxMTAK/PcvIsXL6Fv374hlyVsg86FCxH5GUgtkFwf2BsBccJFrOkDsadTrOkDsadTrOkDpdMpXlVPKWxD1BmCwhCRFepvVL0oJNb0gdjTKdb0gdjTKdb0gfDpZDECwzCMco4ZAsMwjHJOrBiC6ZEWIMTEmj4QezrFmj4QezrFmj4QJp1iIkZgGIZhlJxYaREYhmEYJSSqDYGIXCwim0Rki4hMiLQ8oUBEUkRkrYisFpEVkZanJIjISyKyR0TW+aTVFZFPRWSz93tyJGUMBj/6TBaRH73rtFpELomkjMEgIqeLyCIR2eBNDHWblx7N18ifTlF5nUSkioj8T0S+8fR5yEtvLiJfenXeHG/2x9IfL1pdQyJSEfgOuBDYgZsac7iqboioYKVERFKArqoatf2fRaQPkAG8qqpneWmPAb+o6l89o32yqt4TSTkDxY8+k4EMVZ0aSdlKgog0BBqq6ioRqQmsBC4Hkojea+RPp6uIwuskIgJUV9UMEakEfAbchpvJ8V1VTRaRfwDfqOrzpT1eNLcIugNbVHWbqh4BkoFBEZbJAFR1KfBLgeRBwCve/1dwD2lU4EefqEVVd6nqKu9/Om4q2cZE9zXyp1NU4k0hkOGtVvIWBfoDb3vpIbtG0WwIGgM/+KzvIIovvA8KfCIiK0Xk+kgLE0IaqOou7/9PQINIChMibhGRNZ7rKGrcKL6ISDMgAfiSGLlGBXSCKL1OIlLRm899D/ApsBXYr24+eAhhnRfNhiBW6aWqnYEBwM2eWyKm8GZLik6fZD7PA2cAnYBdwN8jK07wiEgN4B1gnKqm+W6L1mtUiE5Re51UNVtVOwFNcB6QNuE6VjQbgh+B033Wm3hpUY2q/uj97gH+hbsBYoHdnh8315+7J8LylApV3e09qDnAC0TZdfL8zu8As1X1XS85qq9RYTpF+3UCUNX9wCLgHKCOiOQOFhqyOi+aDcFXQEsvin4SMAx4L8IylQoRqe4FuhCR6sD/A9YVvVfU8B4w0vs/Evh3BGUpNbkVpsdgoug6eYHIF4FvVfUJn01Re4386RSt10lEThGROt7/qrhOMd/iDMJQL1vIrlHU9hoC8LqCPQlUBF5S1RBO1XDiEZEWuFYAuCHCX49GnUTkDaAvbqTE3cAkYC7wJtAUN3rsVaoaFQFYP/r0xbkbFEgBbvDxr5dpRKQXsAxYC+R4yffifOrReo386TScKLxOItIBFwyuiHthf1NVH/bqiGSgLvA18AdVPVzq40WzITAMwzBKTzS7hgzDMIwQYIbAMAyjnGOGwDAMo5xjhsAwDKOcY4bAMAyjnGOGwDA8RCTbZ5TK1aEc0VZEmvmOXmoYZYm44rMYRrnhN++TfsMoV1iLwDCKwZsj4jFvnoj/iciZXnozEVnoDWi2QESaeukNRORf3ljy34jIuV5RFUXkBW98+U+8L0YRkbHeOPprRCQ5Qmoa5RgzBIaRT9UCrqGrfbYdUNX2wLO4r9kBngFeUdUOwGzgaS/9aWCJqnYEOgPrvfSWwDRVbQfsB67w0icACV45N4ZLOcPwh31ZbBgeIpKhqjUKSU8B+qvqNm9gs59UtZ6I7MVNhnLUS9+lqvVF5Gegie+n/97QyJ+qaktv/R6gkqo+KiL/wU18MxeY6zMOvWGcEKxFYBiBoX7+B4PvmDDZ5MfoLgWm4VoPX/mMLmkYJwQzBIYRGFf7/H7u/V+OG/UWIBE36BnAAmAM5E0uUttfoSJSAThdVRcB9wC1geNaJYYRTuzNwzDyqerNCJXLf1Q1twvpySKyBvdWP9xLuxWYKSJ3AT8Df/TSbwOmi8ifcG/+Y3CTohRGRWCWZywEeNobf94wThgWIzCMYvBiBF1VdW+kZTGMcGCuIcMwjHKOtQgMwzDKOdYiMAzDKOeYITAMwyjnmCEwDMMo55ghMAzDKOeYITAMwyjnmCEwDMMo5/x/ooASUHUJATcAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAACgCAYAAAAWy/vJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2dZ3hU1daA30UoIRApEZAeUAELhhJFmoLgBcQCYqEJXEUErqJ4FfgUwYZYuCpcFQW5CggGG9gQFSmiKEUERUCaAelNIKEJmfX92GeSyTCTzCSZTDLZ7/OcZ+acs8taZ8/sdXZbW1QVi8VisVi8KRZuASwWi8VSMLEGwmKxWCw+sQbCYrFYLD6xBsJisVgsPrEGwmKxWCw+sQbCYrFYLD6xBqIAISJfiEjfvA4bTkQkWUTahyBdFZELnO+vi8hjgYTNQT69ROSrnMppCQwRaS0iv2dxP94px+I5TL+fiHyXcwmLJjl62JYMRCTV4zQGOAWkOef3qOqMQNNS1U6hCBvpqOrAvEhHROKBP4ASqnrGSXsGEHAZWnKGqi4B6rvPRSQZ6K+q88MmVD4gIo8DF6hq73DL4gtrIHKJqpZ1f8/qRy0ixd2VjsUSbuzvMQP7LPxju5hChIi0EZEdIjJcRPYAb4lIBRH5TET2i8hfzvcaHnEWiUh/53s/EflORMY5Yf8QkU45DFtHRL4VkRQRmS8ir4rIO37kDkTGp0Tkeye9r0TkXI/7d4jINhE5KCKPZvF8monIHhGJ8rjWVUR+cb5fISI/iMhhEdktIq+ISEk/ab0tIk97nD/sxNklInd6he0sIj+LyFER+dN5g3PzrfN5WERSRaS5d9eEiLQQkRUicsT5bBHoswnyOVcUkbccHf4SkTke924SkdWODltEpKNzPVN3nog87i5njy6au0RkO7DAuf6+Uw5HnN/IJR7xS4vIf5zyPOL8xkqLyOcicp+XPr+ISFcfek4VkX8736s7MvzLOT9fRA6JSDFx/i/O9elALeBTpxyGeSTZS0S2i8iBbH5fcSLyifOMlgPne91XEfmXiGwCNjnX7haRzY5Mn4hINa/wQ0Rkq5P3CyJSzLlXTERGOs9pn4hME5Fyzr10vTzSShaR9k65PQLc7ui5xp8+4cIaiNByHlARqA0MwDzvt5zzWsAJ4JUs4jcDfgfOBZ4HpoiI5CDsTGA5EAc8DtyRRZ6ByNgT+CdQGSgJPAQgIhcDE530qzn51cAHqroMOAZc45XuTOd7GjDU0ac50A4YnIXcODJ0dOS5FrgQ8B7/OAb0AcoDnYFBItLFuXeV81leVcuq6g9eaVcEPgcmOLq9CHwuInFeOpz1bHyQ3XOejumyvMRJ6yVHhiuAacDDjg5XAcn+nocPrgYuAjo4519gnlNlYBWZu9PGAU2BFpjf8TDABUwF0rtERCQBqI55Nt4sBtp45L2VjOd8NbBEVV2eEVT1DmA7cINTDs973G6F6YpqB4wSkYv86PkqcBKoCtzpHN50wfxvLhaRa4CxwG1OnG1Aklf4rkAi0AS4ySPNfs7RFqgLlCXr/7Vbz3nAM8AsR8+E7OLkO6pqjzw6MH/U9s73NsDfQHQW4RsBf3mcL8J0UYH5wW32uBcDKHBeMGExlc8ZIMbj/jvAOwHq5EvGkR7ng4F5zvdRQJLHvTLOM2jvJ+2ngf8532MxlXdtP2EfAGZ7nCum7xbgbeBp5/v/gGc9wtXzDOsj3ZeBl5zv8U7Y4h73+wHfOd/vAJZ7xf8B6JfdswnmOWMqKBdQwUe4N9zyZvX7c84fd5ezh251s5ChvBOmHMaAnQASfISLBv4CLnTOxwGv+UnzfCdsMeB14B5gh3NvKvCgx/9lRxa6uOWv4XFtOdDdR55RwGmggce1Z9zl6PH7ucbjfArwvMd5WSeNeI/wHb3K9hvn+zfAYI979Z24xb318tbNs4wK4mFbEKFlv6qedJ+ISIyIvOE0RY9iujTKi0c3ixd73F9U9bjztWyQYasBhzyuAfzpT+AAZdzj8f24h0zVPNNW1WPAQX95YVoLN4tIKeBmYJWqbnPkqOd0u+xx5HgG05rIjkwyYN4EPfVrJiILna6dI8DAANN1p73N69o2zNuzG3/PJhPZPOeamDL7y0fUmsCWAOX1RfqzEZEoEXnW6aY6SkZL5FzniPaVl/ObngX0drpZemBaPGehqlswhr8R0Br4DNglIvUxLYjFQcofyPOthKmc/f4OHDzvZypbVU3F/Har+wm/zYlzVlzne3Ggik8NChHWQIQWb1e5/8a8XTRT1XPIaGr76zbKC3YDFUUkxuNazSzC50bG3Z5pO3nG+Qusquswf6ZOZO5eAtNVtQHzlnoOpq82aBkwLShPZgKfADVVtRzmrdadbnaujXdhuoQ8qQXsDEAub7J6zn9iyqy8j3h/4tWf7sExTOvRzXk+wnjq2BPTVdIe02qI95DhAKaLxl9eU4FemK6e4+rVHefFYuAWoKSq7nTO+wIVgNV+4uTGzfR+TKs5q9+Bdx6ZylZEymB+u55l653eLl9xyWi178WrTJwXgEp+ZChwWAORv8Rimu2Hnf7s0aHO0HkjXwk8LiIlRaQ5cEOIZPwAuF5EWokZUH6S7H9jM4H7MRXk+15yHAVSRaQBMChAGd4D+onIxY6B8pY/FvN2ftLpz+/pcW8/pmunrp+05wL1RKSniBQXkduBizFvxcHi9zmr6m7M2MBrYgazS4iI24BMAf4pIu2cwdHqzvMBU9l2d8InYirl7GQ4hXlTjsG00twyuDDddS+KSDWntdHcae3hGAQX8B/8tB48WAzcS8YkgEXO+XeqmuYnzl78l0OWOGl+hPnNxzhjY9mtGXoX81wbOTo+AyxT1WSPMA875VET85ud5RF3qJjJIGXJGFc4A2wEosVMjigBjARKeekZ7x7wLmgUSKEimJeB0pi3sx+BefmUby/MQO9BTL//LEzF4Iscy6iqvwH/wlT6uzF9zzuyjGT+XFcDC1T1gMf1hzCVdwowmYw/Y3YyfOHosADY7Hx6Mhh4UkRSMGMm73nEPQ6MAb4XM3vqSq+0DwLXY97+D2IGba/3kjtQsnvOd2D6sTcA+zBjMKjqcswg+EvAEUzl6357fYyMPv8nyNwi88U0TAtuJ7DOkcOTh4BfgRXAIeA5MtcZ04CGmDGtrFiMMUZuA/EdxiB96zeGGTAe6ZSDv4H+rLgX0/20BzNG9VZWgdVMTX8M+BDz2z0f6O4V7GPgJ4wh/hxjrMEY0ukYff7AtLzuc9I9gvnNvYl5zsfI/J9wvxQdFJFVwakYesQZKLEUIURkFrBBVUPegrFELiLSBxigqq3CLUuoERHFdHduDrcs+YltQRQBRORyMXPOiznTQG8C5mQXz2Lxh9N9NxiYFG5ZLKHDGoiiwXmYft9UzBz+Qar6c1glshRaRKQDZrxmL9l3Y1kKMbaLyWKxWCw+sS0Ii8VisfjEGgiLxWKx+CRivLmee+65Gh8fn+nasWPHKFOmTHgECgGRpg9Enk6Rpg9Enk6Rpg/kTqeffvrpgKpW8nkzlH48MItJ1gK/AQ841yoCX2M8KH6N428G6OaEWwLEaYYfl1mB5NW0aVP1ZuHChWddK8xEmj6qkadTpOmjGnk6FXR93nlHtXZtVRHz+c472cfJjU7ASs1vX0wicilwN3AFkIBZYXsBMALj5OpCjJOrEU6U+4DLMc7I3Ktbn8asPLRYLJZCzYwZEB8PxYqZzxk+tqGaMQMGDIBt20DVfA4Y4DusZ5rXXHO13zRzQyjHIC7CLFU/rmbJ+WKMQ7abMH5ccD7drpZdmCXoMcBpEWkN7FHVTSGU0WKxWEJOoBX/o4/C8eOZrx0/bq5nnaZka0xyQigNxFqgtZiNO2KA6zDOrqqo8TUDZhm82+PhWGA+xk/Qu5hl70+FUD6LxWLxSSBv+8EQaMW/fbvv+L6uB2NMckpI10GIyF2Y1ZbHMOMLpzC+88t7hPlLVSt4xeuDGav4EeMP5i/gfs3sshoRGYDZiIcqVao0TUrKvL9HamoqZcv6845d+Ig0fSDydIo0fSA8Os2fX5k336zLvn2lqFz5FP37b6V9+335kub8+ZUZN64+p05leLgvVSqNhx76PccyXHPN1aie7YxYRFmwIMPjeffuV7J3b/RZ4apUOUlSUmZXWYGmmR1t27b9SVUTfd70NziR1wfGw+FgzK5nVZ1rVYHfvcLFYByslQC+xGw60xe4O6v07SB14STSdIo0fVTzX6d33lGNiVE1nTHmiIkJbLA2L9KsXTtzOPdRu7bvdAMZUA40zVDJmRWEY5AaQEQqO5+1MOMPbl/8bte7fTEeEj15GJigqqcx3i4VMz4Rg8ViKdQE0nUTiq6TYNIMtJsnmAHlMWMgxqsGi4kx1z3p1QsmTYLatUHEfE6aZK7nNM1c4c9y5MWBmbK6DlgDtHOuxWFmL23CjDlU9AhfDfjc4/xWTNfU90ClrPKyLYjCSaTpFGn6qOadToG+HYv4fjMWyXnewaQZ6Jt5sG/wOZm+mh0ZabpynCZZtCDyrYsp1Ic1EIWTSNMpkvTJi8rHk1BVvHmZt2p4DVlOKXTrICwWS+ElFFMoA+26CUXXSTBpBtrNU8vXJqZZXC+MWANhsUQA4ZqWGUzegVaowfTDB0rmNDXbNHv1guRkcLnMZ9jGAMKNv6ZFYTtsF1PhJNJ0Coc+wcx8CbQfPNDuk2DzzuvZScHo5CYvyygU4wo5wXYxWSwRQqBv3IGGC/RtP5hZN4G+7QfT0ghFyyBY1xR5TSAtjcKMNRAWSz4SaIUWTMUXaN9+MJV5oN0nwaz8hbyvUPNjNXFRxhoIiyUfCbRCC6biC/RtP5jKPNA++3AP1AZroCzBYQ2ExZKPBFqhBVPxBfq2H2xl7n7bX7BgcYEdqA23gYp0rIGwWPKAQN0uB1qhBVPxBdq3H4rKPBTjCsEQbgMV6VgDYbHkkmDWDARaoQVb8QXStx+qyjycA7XhNlCRjjUQFksuCcVMnkiszENFJOpUUIiYPaktlnCRk5k8gVRigYazWEKFbUFYihx5verYDpRaIhVrICxFilAsrLIDpZZIxRoIS5Ei2IVVgbQ2gvXzY7EUFqyBsBQpghkvCKa1EciaAYulsGENhKVAE87xAuvGwVLUsQbCUmAJ93iBdeNgKeqEek/qoSLym4isFZF3RSRaRNqJyCoRWS0i34nIBU7Y+5xwc0WkpHOtlYi8FEoZLXlHOPckCDT/YNYX2NlJlqJOtgZCRG4QkaANiYhUB4YAiap6KRAFdAcmAr1UtREwExjpROkFXAYsBTqIiACPAU8Fm7cl/wnF236oxwuyW1hlZydZijqBVPy3A5tE5HkRaRBk+sWB0iJSHIgBdgEKnOPcL+dcAxCghBPuNNAb+EJVDwWZpyUM5PRtPyvfReEeL7BuHCxFnWxXUqtqbxE5B+gBvC0iCrwFvKuqKVnE2yki44DtwAngK1X9SkT6A3NF5ARwFLjSifIK8CPwG/A98DHQIeeqWfKTnLztmwo9w3cRZK58x4zxDGfI7/ECu5rZUpQRs+NcAAFF4oA7gAeA9cAFwARV/a+f8BWADzEtkMPA+8AHwM3Ac6q6TEQeBuqran+vuKOAXwAX0Af4E/i3qrq8wg0ABgBUqVKlaVJSUiYZUlNTKVu2bED6FQYKsj7du1/J3r3RZ12vUuUkSUk/5jjs/PmVefPNuuzbV4rKlU/Rv/9W2rffl6v8Q0lBLqOcEmk6RZo+kDud2rZt+5OqJvq86W8vUvcB3AjMBn4FHgYqO9djgOQs4t0KTPE474MZf9jica0WsM4rXjXgM+f7YszYxWjg2qzktHtSh5dg9hsOdL/jUOUfSgpyGeWUSNMp0vRRDe+e1N2Al1S1oaq+oKr7HMNyHLgri3jbgStFJMYZcG4HrAPKiUg9J8y1mNaIJ08Bo5zvpTFjFi7HIFkKKOGeHWTHCyyWvCcQA/E4sNx9IiKlRSQeQFW/8RdJVZdhupRWYVofxYBJwN3AhyKyBtNl9bBH2o2duKucSzOduC2BeYGpZMlrAp2+Gu7ZQdbts8WStwTi7vt9oIXHeZpz7fLsIqrqaEz3kCezncNX+J/xaJWo6svAywHIaAkRmQeU8TugHAzueI8+Ctu3K7VqCWPG2ArdYiloBNKCKK6qf7tPnO8lQyeSpSARKncT1neRxVLwCcRA7BeRG90nInITcCB0IlkKEtbdhMVSdAnEQAwEHhGR7SLyJzAcuCe0Yllyit0Mx2Kx5BXZGghV3aKqVwIXAxepagtV3Rx60SzBEm7ndhaLJbIIyMeSiHQGBgMPisgoZyGbpYARzHhBMDOT7PRRi6Voku0sJhF5HbMGoS3wJnALHtNeLQWHQMcLgp2ZZN1NWCIGVaJSU8MtRaEhkBZEC1XtA/ylqk8AzYF62cSxhIFAxwvsRjiWIslff8H119OySxd44QWzYMaSJYEYiJPO53ERqYbxtFo1dCJZckqg4wV2ZpKlyLFmDSQmwtdfc/SSS2DYMOjYEXbvzj8Zfv8dGjaEa66BpCQ4dSr/8s4hgRiIT0WkPPACZlV0MmaFsyWfCMQ1NgQ+XmBnJlmKFO+8A82bmwr5229Z/fLL8MYb8N13kJAAc+eGXoalS6FFC9i7F7ZuhR49oEYNePhh2Lgx9PnnkCwNhLNR0DeqelhVPwRqAw1U1Q5S5xOZZyZJtjOTAnE3YWcmFXHOnIHNmyEtLTz5f/QRrFwZ+nz+/hvuuw/uuAOuuAJ++gmuvNK8PQ0YYGQ47zzo3BkeeCB0b/SzZ0O7dhAXBz/8YAzEvHlw1VXw0ktQvz60bQvvvptzGULVXebPi5/7AH7OLkxBOCLVm2vt2r49n9aunbt033nHpCFiPvPb66mbSCgjTwq8PuvXq15+ufkRVaigevPNqq++qrphg6rL5TNKnunkcqn+3/9l/Ih79lTdti1v0vZm507VFi1MPg8+qHr6dPqtTPqcOKF6330mXEKC6rp1eSvHK6+YP1mzZqr79p19f9cu1WeeUa1Tx8gQF2fk3bAhI8zx46obN6p+843q1KmqTz+tes89qp07q152mWqFCvpHnz45FpEsvLkGYiDGYTy6SnZhw3lEqoEIhWvsgkRYyujAAdV//9tUlDNm+K0Yc0LA+hw/rnrqVJ7lmy1paaovv6waHW0qoeeeU/3nP1Vr1cr4UVWvrtqnj6mEduxIj5onZZSWpjpokMlnwADVRx81skRHG6Nx5Eju83CzZInqeeeplimjmpR01m2f+nz6qeq556qWLq06aVLufxNpaarDhhl9b7xR9dix7MN/+aVqt26qxYubePXqmbLyVQGce65q48Ym7cGDdc3YsTkWNbcGIgXjbvtvzA5wKcDR7OLl9xGpBiJULYiCQr6WUWqq6pgxqueco1qsmGrduuZhXn216q+/5kkW2epz5IjqqFGm8oqJUe3QQfX551V/+slUEqEgOVm1bVuj6/XXq+7enXHP5VLdtEn19ddVb701c4VUv77q4MG6YvLk3OX/99+mtQCqw4dnVL7bt6v27m2uV66s+sYbmd70g8blUh0/3lSwF16ounatz2B+y2jnTtV27Yw8t9yieuhQzuQ4eTJD30GDgtdp927VsWNVb7pJdeBA02KYOlV1wQJTVsePnxUlVPtBhL1iz6sjUg1EQdkIJ1TkSxn9/bepAM87T9Pf6NauVT1zxlyvWFE1Kkp16NBcv8n61efkSVN5nXtuRgV0772qDRpkFGzFiuYNcuJE06WQ27dYl0v1f/9TjY1VLVtW9c03s08zLU31559Vx41T7dRJtUwZdRUrpjpihM+KKVuOHzdGCUyl54vly1VbtzZhLrlEdd684PNJTc2olG+6SfXwYb9Bs/zNpaWpPvusMTK1aqlOnmwMWaAcPpxhjMeOzdPWaVaEzUAAV/k6souX30ekGghVz/ECV1jHC0JBSMvI5VJ97z3zNgmqLVuqfvfd2eEOHDDdHiLGiEyfnuM/9ln6pKWZ9OLjjQzXXGMqRE927FCdNk21b1/VGjUyDEbNmqr9+pl7W7YEJ9OePcYQgupVV6lu3ZojffTQId3VqZOmd3l8+23gcY8cMa0zEWP0ssLlUv3wQ9Xzzzd5dehwdqvu9GkzZrF4sXmjfuIJ0012zTWm3ETM23Y2LbGAfnPLlpkWlLssGjRQHTJE9fPPjTHyxZ9/qjZsaIzLtGnZ55GHhNNAfOpxfA0cARZkFy+/j0g2EG4iTR/VEOo0f75qYmLGW+knn2RfwS5fnjGA27q16po1QWebro/LpTp3rhlEBNNf/OWX2cvgcqn+/rvqa6+Z1kTFihmVVOXKql26mPGDJUv8v9F/+KFpqZQqpfqf/+S662rhwoWqX3+dYeQGD86+pbV/v2rTpqaynDkz8MxOnVJ98UXV8uVNN+ANN6i2aWMGcd19855HtWpmMLpHDyNjoPoEgstlWpovvqjasaMZnwDVkiVNK+HZZ1VXrTLP99dfjXGPjQ1YjrykwHQxATWBD4ONF+qjMBqIYGcSFXR9ckKe6nTsmOrChar/+EfGG/hbb5mupEBJSzODlHFxptvp/vuz7K7wZuHChao//GDenMGMc7z7bs4r6bQ01dWrzRt4nz4ZrSEwFebllxsZk5LMDJw77jD3mjZV/e23nOXpSydV8+b8wAPmB1uzpjGAvtixQ/Wii8wA9Gef5SzTAwfMG3t8vDEAPXuqPvKIKZuvvjJdcCdO5E6fYDlxwlT+Dz9sZjy5y6FSJTOuVbWq6Z4LAwXJQAiwLsCwQ4HfgLXAu0C0E38MsBGzH/UQJ2w3J+wSIM65dj4wK5C8CpuByMnYQkHWJ6fkWKdjx1S//151wgTTNXPppeaN092X/5//5LgCUVVTQQ0caCrDKlVMV0///mZ64eDBZmrkAw+Y2VDDh5vK67HHdF+rVhlv+6+8EpqZSvv2mRbRiBHGELnfbMEYtdGjzbhLHnFWGf3wg+rFF5v8evc2rQU3mzaZSj02VnXRojyTIS/Js//R7t2m+7B3b9PSSU7Om3RzQKgMRCDO+v4LqHNaDGiEWVGdXbzqwBDgYlU9ISLvAd0dA1ETs+DOJSKVnSj3YbYxvRnoCfwXeBoYmV1ehZGs/CFZx3heuFywbJlZ2PTTT+Zz/fqMxUFVqkDTptC1q/ls2xbOOSd3ecbFwcSJ0L+/ccvwzTdmYVlamllo5v7udV6hTBl44gl48EEoWzb3uvuiUiW44QZzAJw+Db/8AitWQLNm0LhxaPJ1c+WVsGoVPPOMOb78Ev77X7joIvjHP8zzWLjQlEUkc9550Lu3OSKUQPak9lzyeAZ4V1W/DyL90iJyGuMRdhem0u+pqi4AVd3nhHUBpZxwp0WkNbBHVTcFmFehwvpDCpDvvoP77zcVEmQYg27dzGfTplCtmlkdGwqaNjXGIVBxFy6kTdu2oZHFHyVKZDyL/KJUKWMIb7kF7roLunc3clSubIzDRRflnyyWkBGIgfgAOKmqaQAiEiUiMap6PKtIqrpTRMYB24ETwFeq+pWIvAvcLiJdgf2YLqZNwFhgPsaI9Abex7Q4IpJatYz7DF/XLZiHM2wYvPceVK8OU6ZAhw6hNQZ5QUGWLRQ0bGjcR4wfD198AZMnG8dhlohATBdUFgFEfgTaq2qqc14WU9m3yCZeBeBD4HbgMKbC/wB4HRitqv8RkZuBoara2ituH6Ai8CPwEPAXcL+3URKRAcAAgCpVqjRNSkrKJENqaiplQ9XM98P8+ZV588267NtXisqVT9G//1bat9/nM9y4cfU5dSoq/VqpUmk89NDvPsNDePQJNd46FTtxglrvvkvNWbMA+LN7d7Z3746rdOlwiRgURaGMCjuRpg/kTqe2bdv+pKqJPm/6G5xwH8DqQK75CHMrMMXjvA/wGrABqKMZA95HvOLFAAuAEsCXQBmgL3B3VvkVhEHqYAee7SwmD53S0szc8WrVzIPr0SN0fnpCSESXUYQQafqohnGQGjgmIk1UdRWAiDTFdBllx3bgShGJccK3w4xnHMXsTvcHcDVmNpMnDwMTVPW0iJTGDJC7HMNRoAl24DnidmpThVmzjK/7GjWgXj3jqbJePdN3FhXlO96PPxpvmsuWGZ/9779vXCNbLJawEoiBeAB4X0R2Yd74z8N0G2WJqi4TkQ8wM57OAD8Dk4DSwAwRGQqkAv3dcZwNia5Qs3MdmJlMKzBdVF0CVSpcFOmB5xUrTCW/dKkxDgsXwtGjGfdLloQLLsgwGPXqQXw8F40dC/PnQ9Wq8PbbxjVzsYC2SrdYLCEmWwOhqitEpAFQ37n0u6qeDiRxVR0NjPa6fAro7Cf8Ls97qvo+ZuyiUFAkB5537YJHHoGpU80MljffhH79TCW/b5/ZRWvjxoxj/Xr47DMzNROoVKKEif9//xe6aaFFkNOnT7Njxw5OnjyZfeBsKFeuHOvXr88DqQoGkaYPBKZTdHQ0NWrUoESJEgGnG8g6iH8BM1R1rXNeQUR6qOprAedSRBgzxuxD4tnNFLEb8Zw4AS++CGPHmsp++HBT0XuuP6hSxRxXXZU57pkzxpJu2sSyI0dofnu2DVJLkOzYsYPY2Fji4+ORXM6sSklJITY2No8kCz+Rpg9kr5OqcvDgQXbs2EGdOnUCTjeQtvzdqnrYI6O/gLsDzqEIEeiWnwWC06fhySfNlMQOHeCxx8yb/T7fM6jSUTVjBBddBCNHmoVR69bBs88GvjiteHE4/3zo2JFTVarkWhXL2Zw8eZK4uLhcGwdLZCAixMXFBd2iDGQMIkrEbE/jZBQFlMyBjEWCQjHw/Ouv0Lcv/PwztG9vjMLYsRlbUNaubbZobNbMfDZpAmXKmPD33w9LlsBll8GCBWbVsqVAYo2DxZOc/B4CMRDzgFki8oZzfg/wRdA5WcLPmTPwwgswejRUqGD2Bu7a1dw7dswYgOXLzWyi5ctNSwHMeEK9emY84dxzzYbvd93lf1aSpchz8OBB2rVrB8CePXuIioqiUqVKACxfvpySJf2/Y65cuZJp06YxYcKELPNo0aIFS5cuzTuhLWcRiIEYjlmMNtA5/wUzk8lSmFi/3rQaVqyA226DV181lYfzY04AABXOSURBVL2bMmWgVStzuNm3zxiK5cuND6QbbzTjDOXK5b/8lpAyY4aZjr19u5lUMWZM7lrCcXFxrF69GoDHH3+csmXL8tBDD6XfP3PmDMWL+65+EhMTSUz0vW7Lk8JoHNLS0ogqRC9W2Y5BqPGZtAxIBq4ArsF4YS1SzJhhuuuLFTOfM2aEW6IASUszrYbGjWHrVrNOYdaszMbBH5Urw/XXm7GKzz+H556zxiECmTHDTK7Yts0MMW3bZs7z+jfer18/Bg4cSLNmzRg2bBjLly+nefPmNG7cmBYtWvD7778DsGjRIq6//nrAGJc777yTNm3aULdu3UytCvfK4UWLFtGmTRtuueUWGjRoQK9evdyLbpk7dy4NGjSgadOmDBkyJD1dT5KTk2ndujVNmjShSZMmmQzPc889R8OGDUlISGDEiBEAbN68mfbt25OQkECTJk3YsmVLJpkB7r33Xt5++20A4uPjGT58OE2aNOH9999n8uTJXH755SQkJNCtWzeOO7Na9u7dS9euXUlISCAhIYGlS5cyatQoXn755fR0H330UcaPH5/rsggUvy0IEakH9HCOA8AsAFUtcp3O7j+Qe3aS+w8EBXy8YeNGM+X0hx9MV9LEiWZWkcXiQX56Ft6xYwdLly4lKiqKo0ePsmTJEooXL878+fN55JFH+PDDD8+Ks2HDBhYuXEhKSgr169dn0KBBZ03V/Pnnn/ntt9+oVq0aLVu25PvvvycxMZF77rmHb7/9ljp16tCjRw+fMlWuXJmvv/6a6OhoNm3aRI8ePVi5ciVffPEFH3/8McuWLSMmJoZDhw4B0KtXL0aMGEHXrl05efIkLpeLP//8M0u94+LiWOU4nDx48CB3323m+YwcOZIpU6Zw3333MWTIEK6++mpmz55NWloaqampVKtWjZtvvpkHHngAl8tFUlISy5cvD/q555Ssupg2YPZmuF5VNwM4i9uKHAXCNfeZM5zz66/Gi2bp0mb+rOdndHTGAjOXy7hf/r//M9dnzIAePYqeIzlLQOTnAs9bb701vYvlyJEj9O3bl02bNiEinD7te3lV586dKVWqFKVKlaJy5crs3buXGjVqZApzxRVXpF9r1KgRycnJlC1blrp166ZP6+zRoweTJk06K/3Tp09z7733snr1aqKioti40Th3mD9/Pv/85z+JiTFOHCpWrEhKSgo7d+6kqzN2Fx0dHZDet3tM5V67di0jR47k8OHDpKam0qFDBwAWLFjAtGnTAIiKiqJcuXKUK1eOuLg4fv75Z/bu3Uvjxo2Ji4sLKM+8ICsDcTPGm+pCEZkHJGFWUhc5wr5Ceu9euP12mixenHW46GhjMIoVgwMHTPfQpElmlbLF4of8XOBZpkyZ9O+PPfYYbdu2Zfbs2SQnJ9OmTRufcUqVKpX+PSoqijNnzuQojD9eeuklqlSpwpo1a3C5XAFX+p4UL14cl3t/EjhrOqmn3v369WPOnDkkJCTw9ttvs2jRoizT7t+/P2+//TZ79uzhzjvvDFq23OB3DEJV56hqd6ABsBDjcqOyiEwUkX/kl4AFAX9/lHxZIf3jj8bP//LlbLz/fpg3D2bPNq2CyZNhwgSzBmH0aLjvPtNSuPFGeOcd+OQTaxws2TJmjHmv8CQ/FngeOXKE6tWrA6T31+cl9evXZ+vWrSQnJwMwy/EQ7EuOqlWrUqxYMaZPn06aM9372muv5a233kofIzh06BCxsbHUqFGDOXPmAHDq1CmOHz9O7dq1WbduHadOneLw4cN8k8UeIikpKVStWpXTp08zw2Ogp127dkycOBEwg9lHjhwBoGvXrsybN48VK1aktzbyi0BcbRwDZgIzHRfet2JmNn0VYtkKDGFZIa0Kr79u1h3UrAk//MCuv/6inp+3LIslp7i7SfNyFlMgDBs2jL59+/L000/TubNP7zu5onTp0rz22mt07NiRMmXKcPnll/sMN3jwYLp168a0adPSwwJ07NiR1atXk5iYSMmSJbnuuut45plnmD59Ovfccw+jRo2iRIkSvP/++9StW5fbbruNSy+9lDp16tA4i139nnrqKZo1a0alSpVo1qwZKSkpAIwfP54BAwYwZcoUoqKimDhxIs2bN6dkyZK0bduW8uXL5/8MKH9uXgvbEWp338G65s4Vx4+bfZZB9brrVA8dUlXrprgwUFD0WbduXZ6ldfTo0TxLK79JSUlRVVWXy6WDBg3SF198sdDpk5aWpgkJCbpx40a/YQLVydfvgizcfVu3mQHSqxckJ5vx3+TkEL5d/fEHtGxpnN+NHg2ffmoWtVkslqCZPHkyjRo14pJLLuHIkSPcc8894RYpKNatW8cFF1xAu3btuPDCC/M9/0AWylnyiy+/hJ49jRX67DMIQbPbYilKDB06lKFDM0++dHfpFAYuvvhitm7dGrb8bQuiIOBymU7fTp3M/ssrV1rjYLFYwo5tQYSbI0egTx8z46hnTzMt1WNKnMVisYSLIm0g8tr/TDqqxn/Rzp1w8GDGceBA5vODB+HQIbNuYfx4M03VLmazWCwFhCJrIELqPuPRR437bE+ioyEuzvhAiosz7rLj4sxx443GrbbFYrEUIEI6BiEiQ0XkNxFZKyLviki0x70JIpLqcX6fE26uiJR0rrUSkZdCIVtW7jNyxWefGePQp49xn719u3GlfeIE7NgBq1fDN9/Ae+8Z30hPP22NgyXiaNu2LV9++WWmay+//DKDBg3yG6dNmzasXLkSgOuuu47Dhw+fFebxxx9n3LhxWeY9Z84c1q1bl34+atQo5s+fH4z4FoeQGQgRqQ4MARJV9VIgCuO6AxFJBLznbvYCLgOWAh3E7G7xGPBUKOQLifuM5GRjGBo1MnsmNGpkFrl5L1O1WCKcHj16kJSUlOlaUlKSX4d53sydO5fy5cvnKG9vA/Hkk0/Svn37HKUVLtyrucNNqGcxFQdKi0hxIAbY5exI9wIwzCusACWccKeB3sAXqnooFILlufuMU6fg1lvNjKQPPjBdShZLEeWWW27h888/5++//waMS+1du3bRunVrBg0aRGJiIpdccgmjR4/2GT8+Pp4DBw4AMGbMGOrVq0erVq3SXYIDPt1mL126lE8++YSHH36YRo0asWXLFvr168cHH3wAwDfffEOrVq1o2LAhd955J6dOnUrPb/To0TRp0oSGDRuyYcOGs2QqyG7Bn3766ZC4BQ/ZGISq7hSRccB24ATwlap+JSL3A5+o6m6vLfBeAX4EfgO+Bz4GsnQ8IiIDMJsZUaVKlbOcXqWmpvp1hNW7d2XGjavPqVMZS9dLlUqjd+/fWbQom32ZfXDh+PFUX7mStU8+yYE//4Rs3P/mhKz0KaxEmk4FRZ9y5cqlz/cvNXw4xX79NcdplVbljNfkCVfDhpx67jm/cUqUKEGTJk346KOP6Ny5M1OnTqVLly6kpqYyYsQIKlasSFpaGjfccAMdO3bk0ksvJS0tjWPHjpGSkoKqkpqayrp165g5cyZLlizhzJkztG7dmksvvZSUlBSuvfZaunfvDphWwquvvsrAgQPp1KkTHTt2pEuXLoDx1nrixAn2799P3759mTNnDvXr12fAgAG89NJL/Otf/0JVKVu2LIsXL2by5MmMHTuWV155JfNzKF2ajz76iOjoaDZv3sxdd93F4sWL+eqrr/joo4+YP39+ulvwlJQUunfvzoMPPsgNN9yQ7hb8+PHjnDlzJr1s/v77b06ePJmus1sGMG7Bfek3ePBgmjVrxrRp09Ldgvfq1Ys+ffpw11134XK5mDlzZrqLdE9OnjwZ1O8zZAbC8dt0E1AHOAy8LyJ9ML6c2niHV9XpwHQn7ihgAtDJifMn8G81mxd5xpkETAJITExUb2+Q7o1EfNGmDVx0kfcspih69boYuDg4ZZOSYM4c+Pe/ufSxx4KLGwRZ6VNYiTSdCoo+69evJzY21pyULJmr7WHPpKVR3Dt+yZKUdKfvhzvuuIOPP/6Y7t27M3v2bKZMmUJsbCwzZsxg0qRJnDlzht27d7Nt2zaaN29OVFQUZcqUITY2FhGhbNmyrFq1im7dulHF2cekS5culCpVitjYWFatWsUdd9yRyW12bGwsJUqUoHTp0un6u8937dpF3bp1qV+/PrGxsfTv359XX32VESNGICL07NmT2NhYWrZsydy5czOen4PL5TrLLXhsbCxLly6lf//+6TLGxsaSkpLCnj176NmzZ/o1gJiYGIoXL55+XrJkSaKjo9N17tOnT/o9f/p9++23zJw5M92Dbfny5SlXrhyVKlVi8+bN7N27l6ZNmxIfH39WmURHR2fpJ8qbUM5iag/8oar7AUTkI+AJoDSw2Wk9xIjIZlW9wB1JRKoBV6jqkyKyGLOD3UigHfB1XgrYq1cezFhavx769zfuMbxnLlksBQGProeccCIl5azKMhBuuukmhg4dyqpVqzh+/DhNmzbljz/+YNy4caxYsYIKFSrQr1+/s1xjB0qwbrOzw13h+nMXXhTdgodyDGI7cKWIxDgDzu2AF1X1PFWNV9V44LincXB4ChjlfC8NKODCjE0ULI4dg1tuMYPQs2aB1y5XFktRpmzZsrRt25Y777wzfXD66NGjlClThnLlyrF3716++OKLLNO46qqrmDNnDidOnCAlJYVPP/00/Z4/t9nuN3hv6tevT3JyMlu2bAFg+vTpXH311QHrUxTdgofMQKjqMuADYBXwq5PX2ds5eSAijZ24q5xLM524LYF5oZI1R6jCwIGmBTFzpnGRYbFYMtGjRw/WrFmTbiASEhJo3LgxDRo0oGfPnrRs2TLL+E2aNOH2228nISGBTp06ZXLZ7Xab3bJlSxo0aJB+vXv37rzwwgs0btw43RiA6V5566236Nu3Lw0bNqRYsWIMHDgwYF0GDx7M1KlTSUhIYMOGDZncgt94440kJibSqFGj9Gm406dPZ8KECVx22WW0aNGCPXv2ULNmzXS34LfddltAbsG99Rs/fjwLFy6kYcOGNG3aNH3Gltst+G233ZZ3bsH9uXktbEeo3X2fxRtvGHfcTzwRujy8KCiupPOSSNOpoOhj3X37J9L0UTU6BeIW3Lr7zg9WrYIhQ6BDBxg5MtzSWCyWIs6GDRtC4ha8yLrayDGHD5txh0qVzLaexayNtVgs4aVBgwYhcQtuDUQwqEK/fmaNw7ffGr9KFovFEqFYA+EPVUhJgV27YPdu87lkCXz8sZk22Lx5uCW0WLJEVRHrHdjiYIYbgsMaiI0bTaXvNgLuz127zvbmB8bX0pAh+S+nxRIE0dHRHDx4kLi4OGskLKgqBw8eDHrthjUQa9fCsGFmk55q1aBqVUhMNJ/uc/dn1apQrly4JbZYsqVGjRrs2LGD/fv35zqtkydP5mhRWEEl0vSBwHSKjo6mRo0aQaVrDcR118HRo5CDlaIWS0GlRIkS1KlTJ0/SWrRoUVDuGQo6kaYPhE4nayCio63nVYvFYvGBnaNpsVgsFp9YA2GxWCwWn0hOpj4VRERkP7DN6/K5wIEwiBMqIk0fiDydIk0fiDydIk0fyJ1OtVW1kq8bEWMgfCEiK1U1Mdxy5BWRpg9Enk6Rpg9Enk6Rpg+ETifbxWSxWCwWn1gDYbFYLBafRLqByHL/iUJIpOkDkadTpOkDkadTpOkDIdIposcgLBaLxZJzIr0FYbFYLJYcEpEGQkQ6isjvIrJZREaEW568QESSReRXEVktIivDLU9OEJH/icg+EVnrca2iiHwtIpuczwrhlDEY/OjzuIjsdMpptYhcF04Zg0FEaorIQhFZJyK/icj9zvXCXEb+dCqU5SQi0SKyXETWOPo84VyvIyLLnDpvloiUzJP8Iq2LSUSigI3AtcAOYAXQQ1XXhVWwXCIiyUCiqhba+dsichWQCkxT1Uuda88Dh1T1WceYV1DV4eGUM1D86PM4kKqq48IpW04QkapAVVVdJSKxwE9AF6AfhbeM/Ol0G4WwnMS45i2jqqkiUgL4DrgfeBD4SFWTROR1YI2qTsxtfpHYgrgC2KyqW1X1byAJuCnMMlkAVf0WOOR1+SZgqvN9KubPWyjwo0+hRVV3q+oq53sKsB6oTuEuI386FUqcbaRTndMSzqHANcAHzvU8K6NINBDVgT89zndQiH8QHijwlYj8JCIDwi1MHlJFVXc73/cAVcIpTB5xr4j84nRBFZruGE9EJB5oDCwjQsrISycopOUkIlEishrYB3wNbAEOq+oZJ0ie1XmRaCAilVaq2gToBPzL6d6IKNT0dxb2Ps+JwPlAI2A38J/wihM8IlIW+BB4QFWPet4rrGXkQ6dCW06qmqaqjYAamB6TBqHKKxINxE6gpsd5DedaoUZVdzqf+4DZmB9GJLDX6Sd29xfvC7M8uUJV9zp/YBcwmUJWTk6/9ofADFX9yLlcqMvIl06FvZwAVPUwsBBoDpQXEff2DXlW50WigVgBXOiM6pcEugOfhFmmXCEiZZwBNkSkDPAPYG3WsQoNnwB9ne99gY/DKEuucVekDl0pROXkDIBOAdar6osetwptGfnTqbCWk4hUEpHyzvfSmMk46zGG4hYnWJ6VUcTNYgJwpqy9DEQB/1PVMWEWKVeISF1MqwHMJk8zC6NOIvIu0AbjeXIvMBqYA7wH1MJ4471NVQvFwK8ffdpgui0USAbu8ei/L9CISCtgCfAr4HIuP4Lpsy+sZeRPpx4UwnISkcswg9BRmBf891T1SaeOSAIqAj8DvVX1VK7zi0QDYbFYLJbcE4ldTBaLxWLJA6yBsFgsFotPrIGwWCwWi0+sgbBYLBaLT6yBsFgsFotPrIGwWLJBRNI8vH6uzksPwSIS7+kN1mIpSBTPPojFUuQ54bg2sFiKFLYFYbHkEGePjuedfTqWi8gFzvV4EVngOIL7RkRqOderiMhsx5f/GhFp4SQVJSKTHf/+XzkrZBGRIc4+Br+ISFKY1LQUYayBsFiyp7RXF9PtHveOqGpD4BXM6n2A/wJTVfUyYAYwwbk+AVisqglAE+A35/qFwKuqeglwGOjmXB8BNHbSGRgq5SwWf9iV1BZLNohIqqqW9XE9GbhGVbc6DuH2qGqciBzAbFJz2rm+W1XPFZH9QA1PFwiOC+qvVfVC53w4UEJVnxaReZgNieYAczz2AbBY8gXbgrBYcof6+R4Mnj5z0sgYG+wMvIppbazw8NZpseQL1kBYLLnjdo/PH5zvSzFehAF6YZzFAXwDDIL0TV/K+UtURIoBNVV1ITAcKAec1YqxWEKJfSOxWLKntLODl5t5quqe6lpBRH7BtAJ6ONfuA94SkYeB/cA/nev3A5NE5C5MS2EQZrMaX0QB7zhGRIAJjv9/iyXfsGMQFksOccYgElX1QLhlsVhCge1islgsFotPbAvCYrFYLD6xLQiLxWKx+MQaCIvFYrH4xBoIi8VisfjEGgiLxWKx+MQaCIvFYrH4xBoIi8Visfjk/wGtVana9PZEmwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "Y0pre4AfDIWE"
|
||
},
|
||
"source": [
|
||
""
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "lPyLGbaYMH0T"
|
||
},
|
||
"source": [
|
||
""
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "ywRhABUqMTXZ"
|
||
},
|
||
"source": [
|
||
"### No Dropout"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "VfThcoVJMTZ-"
|
||
},
|
||
"source": [
|
||
"class FMNISTDataset(Dataset):\n",
|
||
" def __init__(self, x, y):\n",
|
||
" x = x.float()/255\n",
|
||
" x = x.view(-1,28*28)\n",
|
||
" self.x, self.y = x, y \n",
|
||
" def __getitem__(self, ix):\n",
|
||
" x, y = self.x[ix], self.y[ix] \n",
|
||
" return x.to(device), y.to(device)\n",
|
||
" def __len__(self): \n",
|
||
" return len(self.x)\n",
|
||
"\n",
|
||
"from torch.optim import SGD, Adam\n",
|
||
"def get_model():\n",
|
||
" model = nn.Sequential(\n",
|
||
" nn.Linear(28 * 28, 1000),\n",
|
||
" nn.ReLU(),\n",
|
||
" nn.Linear(1000, 10)\n",
|
||
" ).to(device)\n",
|
||
"\n",
|
||
" loss_fn = nn.CrossEntropyLoss()\n",
|
||
" optimizer = Adam(model.parameters(), lr=1e-3)\n",
|
||
" return model, loss_fn, optimizer\n",
|
||
"\n",
|
||
"def train_batch(x, y, model, opt, loss_fn):\n",
|
||
" prediction = model(x)\n",
|
||
" batch_loss = loss_fn(prediction, y)\n",
|
||
" batch_loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
" optimizer.zero_grad()\n",
|
||
" return batch_loss.item()\n",
|
||
"\n",
|
||
"def accuracy(x, y, model):\n",
|
||
" with torch.no_grad():\n",
|
||
" prediction = model(x)\n",
|
||
" max_values, argmaxes = prediction.max(-1)\n",
|
||
" is_correct = argmaxes == y\n",
|
||
" return is_correct.cpu().numpy().tolist()\n"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "srZdvgL8MUWP"
|
||
},
|
||
"source": [
|
||
"trn_dl, val_dl = get_data()\n",
|
||
"model2, loss_fn, optimizer = get_model()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "44QWT2kgMWN7",
|
||
"outputId": "0fc4cc98-5aec-4ec9-e4ae-0dc35d0cdab8",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 563
|
||
}
|
||
},
|
||
"source": [
|
||
"train_losses, train_accuracies = [], []\n",
|
||
"val_losses, val_accuracies = [], []\n",
|
||
"for epoch in range(30):\n",
|
||
" print(epoch)\n",
|
||
" train_epoch_losses, train_epoch_accuracies = [], []\n",
|
||
" for ix, batch in enumerate(iter(trn_dl)):\n",
|
||
" x, y = batch\n",
|
||
" batch_loss = train_batch(x, y, model2, optimizer, loss_fn)\n",
|
||
" train_epoch_losses.append(batch_loss) \n",
|
||
" train_epoch_loss = np.array(train_epoch_losses).mean()\n",
|
||
"\n",
|
||
" for ix, batch in enumerate(iter(trn_dl)):\n",
|
||
" x, y = batch\n",
|
||
" is_correct = accuracy(x, y, model2)\n",
|
||
" train_epoch_accuracies.extend(is_correct)\n",
|
||
" train_epoch_accuracy = np.mean(train_epoch_accuracies)\n",
|
||
"\n",
|
||
" for ix, batch in enumerate(iter(val_dl)):\n",
|
||
" x, y = batch\n",
|
||
" val_is_correct = accuracy(x, y, model2)\n",
|
||
" validation_loss = val_loss(x, y, model2)\n",
|
||
" val_epoch_accuracy = np.mean(val_is_correct)\n",
|
||
"\n",
|
||
" train_losses.append(train_epoch_loss)\n",
|
||
" train_accuracies.append(train_epoch_accuracy)\n",
|
||
" val_losses.append(validation_loss)\n",
|
||
" val_accuracies.append(val_epoch_accuracy)"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"text": [
|
||
"0\n",
|
||
"1\n",
|
||
"2\n",
|
||
"3\n",
|
||
"4\n",
|
||
"5\n",
|
||
"6\n",
|
||
"7\n",
|
||
"8\n",
|
||
"9\n",
|
||
"10\n",
|
||
"11\n",
|
||
"12\n",
|
||
"13\n",
|
||
"14\n",
|
||
"15\n",
|
||
"16\n",
|
||
"17\n",
|
||
"18\n",
|
||
"19\n",
|
||
"20\n",
|
||
"21\n",
|
||
"22\n",
|
||
"23\n",
|
||
"24\n",
|
||
"25\n",
|
||
"26\n",
|
||
"27\n",
|
||
"28\n",
|
||
"29\n"
|
||
],
|
||
"name": "stdout"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "0Yg4eyCQMYJO",
|
||
"outputId": "e625b1c5-84dd-486b-91c9-4bb720c1df48",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
}
|
||
},
|
||
"source": [
|
||
"for ix, par in enumerate(model2.parameters()):\n",
|
||
" if(ix==0):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of weights conencting input to hidden layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix ==1):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of biases of hidden layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix==2):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of weights conencting hidden to output layer')\n",
|
||
" plt.show()\n",
|
||
" elif(ix ==3):\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" #plt.xlim(-2,2)\n",
|
||
" plt.title('Distribution of biases of output layer')\n",
|
||
" plt.show() "
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEICAYAAABBBrPDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdjUlEQVR4nO3de7gcVZ3u8e8rIYjcEiATMYkEJUeNPCoYSXwcZxhRCBcNxwsDD0pEJAdFR0c8GtQZEGEIZ44yclQ8KBkSRCGDMmQ0GDNch6NANorcIrJFYhIIbJJwEwGB3/mjfhsqTffqDtnpzuX9PE8/qV61aq3V1VX1dlVX7ygiMDMza+UlvR6AmZlt3BwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRVtkUEj6tqR/GKK2XinpMUlb5fOrJX10KNrO9i6XNH2o2luHfk+T9KCklRuwj8ckvarDuiFpzw01lk3Vhto+JL1d0p1D3W4vSDpF0vcK82+XtF+LeftJWl5Y9nxJpw3BMBvb/bCk64a63RdrswsKSfdI+pOkRyU9JOnnko6X9NxrjYjjI+IrHbb1zlKdiPhDRGwfEc8MwdhfsEFHxEERMWd9217HcbwSOBGYGBEv31D95Hq7e33b2dh2qg2lm9tHRPxXRLxmqNttpt2HgA39/kbE6yPi6g3V/uZgswuK9O6I2AHYHZgFfB44b6g7kTRsqNvcSLwSWBURD/R6IGbWHcXjWURsVg/gHuCdDWX7As8Ce+Xz84HTcnpX4MfAQ8Bq4L+oAvSCXOZPwGPA54DxQADHAn8Arq2VDcv2rgbOAG4EHgEuA3bOefsBy5uNF5gKPAX8Ofv7da29j+b0S4AvAUuBB4C5wE45b3Ac03NsDwJfLKynnXL5gWzvS9n+O/M1P5vjOL/JstcA78vpt2W/h+Tz/YGba3U/AiwB1gALgd1r8wLYM6d3Af4j19li4DTguoa6xwN35Xv1TUDA64AngGdyvA9l/YOBO4BHgRXAZwvr4rgc46O5zD5Z/rpc/w8BtwPvqS1zfo7hJ7ncDcCra/NfCyyi2qbuBA5fh2VfX1v2fuALHW4fHwauA/53ru/fAwfV2t2Dapt9FPjPHMP3WqyT/ahtq1Tb6WeBW4CHgYuBl9br5jgfzLpH1ZZ9boz1ceb0tfne/jFf1982jKPV+9t0+23xWk4B5mX9R/O9nNTsmAFsm+/PmtwW/mfDetgb+GW2czFwEXksyfmHAjdTbTM/B97QyTpsMubn1lE+/zqwjGr/uAl4e5a/HHgc2KVWd59cL1t3uA+eQLVf/b7lPrIhD9q9eNAkKLL8D8DHajvqYFCcAXwb2DofbwfUrC2ePxjPBbbLjWqwrB4UK4C9ss4PyZ2RQlDUNujvNcy/mucPBB8B+oFXAdsDPwIuaBjbd3JcbwSeBF7XYj3NpQqxHXLZ3wLHthpnw7KnAv8np78A/A44szbv6zk9Lcf7OmAY1c7884aNdDAoLsrHy4CJVDtFY1D8GBhBdcYzAExttlNl2X08vzONJA/+TV7LB/L9egtV8OxJdSa6dY79C8Bw4B1UB4fX1LahVVQfQoYBFwIX5bztcvzH5Ly9qQ6gEztYdocc+4nAS/P55A63jw9TBclxwFbAx4B7eX57/gVViAwH/pLqoLMuQXEj8ApgZ6oDz/G1uk8DXwO2Af6a6sD/msYxNnu/6ttBi7E0e39bbr9Nlj+FKmwOzvVyBnB9i31wFtWHxZ2BccBtg+sh19tS4O+pto/35/oePJbsTfUBbnL2Mz3b3qbdOmz3moEPUn2YGpbbxkqeD+oF5LEtn5/F8/tnJ/vgohzPtq3eg8310lMz91KtjEZ/BnajStk/R3Vttt0fwDolIv4YEX9qMf+CiLgtIv4I/ANw+OCX3evpKOBrEXF3RDwGnAQc0XDK+OWI+FNE/Br4NVVgrCXHcgRwUkQ8GhH3AF8FPtThOK6hOhgA/BXVjjf4/K9zPlRnAGdExJKIeBr4J+BNknZvMp73ASdHxOMRcQfQ7Lr7rIh4KCL+AFwFvKkwxj8DEyXtGBFrIuKXLep9FPhfEbE4Kv0RsRSYQhXGsyLiqYi4kiqojqwte2lE3Jiv7cLaeA4F7omIf42IpyPiV1QfGD7Q4bIrI+KrEfFEvj83FF5no6UR8Z2ovjObQ7Vtj87vnd4C/GO+nuuA+evQLsDZEXFvRKymOvtrXP//EBFPRsQ1VGdLh69j+x15kdvvdRGxINfLBTTZL9LhwOkRsToilgFn1+ZNoQqIf8ljxSVUZ7+DZgD/NyJuiIhnovru6MlcblC7ddhURHwvIlbl9vRVqkAe/A5pDlWQDK6bI/M1Qmf74Bn5elsdz7aooBhDdSrf6J+pEvdnku6WNLODtpatw/ylVBvXrh2NsuwV2V697WHA6FpZ/S6lx6kOdo12zTE1tjWmw3H8AvhvkkZTbehzgXGSdqX6lHxt1tsd+HreVDB4aU9N+hmVr6O+3pqt405e26D3UX2CXCrpGklvbVFvHNUZUaNXAMsi4tlaWeM6ajWe3YHJg687X/tRVJcJ2i3bajydeq7diHg8J7enej2ra2XQfjtu2TYvXP9r8oPRoKXZ54bwYrbfxrG/tMU1+Vfwwv23Pm9FwwfJ+vzdgRMb3vdxrL0e1mUbfo6kz0paIunhbHcnnj+mXEb1oWgP4F3AwxFxY21M7fbBttvBFhEUkt5CtWJecOdEfiI5MSJeBbwH+Iyk/Qdnt2iy3RnHuNr0K6k+3T5IdTr+stq4tqI6SHba7r1Ub3y97aeprmOviwdzTI1trehk4TzY3AR8CrgtIp6iuh77GeB3EfFgVl0G/I+IGFF7bBsRP29ociBfx9ha2Tg694L1lmcI04C/AP6d6hp1M8uAVzcpv5cq/Or7SKfraBlwTcPr3j4iPtbhsq1uGW63fZTcB+ws6WW1snVZx+2MlLRd7fkrqdYhNGz3rB2YnWh83eu1/bZxHy/cf+vzxkhSi/nLqM5G6u/7yyLiB+szIElvp/qO9HBgZESMoPqOQwAR8QTV9v1BqrOqC2qLd7IPtt2uNuugkLSjpEOprn1/LyJubVLnUEl75pv/MNWXZoOfIu+n9U5b8kFJE3OnPBW4JE95f0v1SeYQSVtTXS/cprbc/cD4hoNT3Q+Av5e0h6TtqU4jL85Tyo7lWOYBp0vaIU9DPwO0vNe8iWuAT/D8ZaarG55D9d3PSZJeDyBpJ0n1yy/18fwIOEXSyyS9Fjh6HcZyPzBW0vDsZ7ikoyTtFBF/proW/2yLZb8LfFbSm1XZM9fHDVSf+D4naeu8z/7dVNtSOz+mOuP6UC67taS3SHpdh8vuJunTkrbJ92dy7XWWto+W8nJaH9U6Hp5nWO9e13ba+HK2/XaqS2j/luU3A+/N93ZPqptB6trtZ2u9v0O0/bYyj2qbHSlpLPDJ2rxfUH2g+bt8T99LdQY96DvA8ZIm57a0Xe7rO6znmHbIfgeAYZL+Edixoc5cqu813sPaQdHRPtjO5hoU/yHpUao0/SLVl2zHtKg7geoOkMeoNoRvRcRVOe8M4Et52vbZdej/AqovLFdSfSH5dwAR8TDwcaqD0wqqT1r1H/MM7lirJDW7pj47276W6o6WJ1h7Q14Xn8z+76Y60/p+tt+pa6g24GtbPCciLgXOBC6S9AjVF4MHtWjvE1Sn0yupXuMPqK7vduJKqjtZVkoaPJv5EHBP9ns81aWfF4iIfwNOp3r9j1KdfeycZ0nvzvE+CHwLODoiftNuMBHxKHAA1XX0e/M1ncnaHwpKy74r+15JdTfK3+TsdttHO0cBb6X6Iv00qrtuOl3H7aykuqvmXqrvXI6vrauzqO7Yup/qevqFDcueAszJ/azZ9xrN3t/13X5b+TLV5aTfAz+jdtDNbeK9VAfk1cDfUn3AGZzfR3UjwTeo1kV/1l1fC4GfUn3QXEq13691uSgi/h/Vh6Ff5oeCwfJ12QdbGrwbwmyjIulM4OURMb3XY9lcSboY+E1EnLye7exHdcY+tl1d23AkXQl8PyK+O9Rtb65nFLaJkfRaSW/IU/Z9qS5PXNrrcW1O8vLXqyW9RNJUqlsn/73X47L1l9/D7kN1ljjkNtdfFtumZweqy02voLpE8VWquzls6Lyc6lLJLlSXPD+Wt+7aJkzSHOAw4FN56XLo+/ClJzMzK/GlJzMzK9rsLj3tuuuuMX78+F4Pw8xsk3LTTTc9GBGjms3b7IJi/Pjx9PX19XoYZmabFElLW83zpSczMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMr2ux+mW22sRo/8yc96/ueWYf0rG/b9PmMwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVlRR0EhaYSkSyT9RtISSW+VtLOkRZLuyn9HZl1JOltSv6RbJO1Ta2d61r9L0vRa+Zsl3ZrLnC1JWd60DzMz655Ozyi+Dvw0Il4LvBFYAswEroiICcAV+RzgIGBCPmYA50B10AdOBiYD+wIn1w785wDH1ZabmuWt+jAzsy5pGxSSdgL+CjgPICKeioiHgGnAnKw2Bzgsp6cBc6NyPTBC0m7AgcCiiFgdEWuARcDUnLdjRFwfEQHMbWirWR9mZtYlnZxR7AEMAP8q6VeSvitpO2B0RNyXdVYCo3N6DLCstvzyLCuVL29STqGPtUiaIalPUt/AwEAHL8nMzDrVSVAMA/YBzomIvYE/0nAJKM8EYuiH11kfEXFuREyKiEmjRo3akMMwM9vidBIUy4HlEXFDPr+EKjjuz8tG5L8P5PwVwLja8mOzrFQ+tkk5hT7MzKxL2gZFRKwElkl6TRbtD9wBzAcG71yaDlyW0/OBo/PupynAw3n5aCFwgKSR+SX2AcDCnPeIpCl5t9PRDW0168PMzLqk0/+P4pPAhZKGA3cDx1CFzDxJxwJLgcOz7gLgYKAfeDzrEhGrJX0FWJz1To2I1Tn9ceB8YFvg8nwAzGrRh5mZdUlHQRERNwOTmszav0ndAE5o0c5sYHaT8j5gryblq5r1YWZm3eNfZpuZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFHQWFpHsk3SrpZkl9WbazpEWS7sp/R2a5JJ0tqV/SLZL2qbUzPevfJWl6rfzN2X5/LqtSH2Zm1j3rckbxNxHxpoiYlM9nAldExATginwOcBAwIR8zgHOgOugDJwOTgX2Bk2sH/nOA42rLTW3Th5mZdcn6XHqaBszJ6TnAYbXyuVG5HhghaTfgQGBRRKyOiDXAImBqztsxIq6PiADmNrTVrA8zM+uSToMigJ9JuknSjCwbHRH35fRKYHROjwGW1ZZdnmWl8uVNykt9rEXSDEl9kvoGBgY6fElmZtaJYR3W+8uIWCHpL4BFkn5TnxkRISmGfnid9RER5wLnAkyaNGmDjsPMbEvT0RlFRKzIfx8ALqX6juH+vGxE/vtAVl8BjKstPjbLSuVjm5RT6MPMzLqkbVBI2k7SDoPTwAHAbcB8YPDOpenAZTk9Hzg6736aAjycl48WAgdIGplfYh8ALMx5j0iaknc7Hd3QVrM+zMysSzq59DQauDTvWB0GfD8ifippMTBP0rHAUuDwrL8AOBjoBx4HjgGIiNWSvgIsznqnRsTqnP44cD6wLXB5PgBmtejDzMy6pG1QRMTdwBublK8C9m9SHsAJLdqaDcxuUt4H7NVpH2Zm1j3+ZbaZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7OijoNC0laSfiXpx/l8D0k3SOqXdLGk4Vm+TT7vz/nja22clOV3SjqwVj41y/olzayVN+3DzMy6Z13OKD4FLKk9PxM4KyL2BNYAx2b5scCaLD8r6yFpInAE8HpgKvCtDJ+tgG8CBwETgSOzbqkPMzPrko6CQtJY4BDgu/lcwDuAS7LKHOCwnJ6Wz8n5+2f9acBFEfFkRPwe6Af2zUd/RNwdEU8BFwHT2vRhZmZd0ukZxb8AnwOezee7AA9FxNP5fDkwJqfHAMsAcv7DWf+58oZlWpWX+liLpBmS+iT1DQwMdPiSzMysE22DQtKhwAMRcVMXxvOiRMS5ETEpIiaNGjWq18MxM9usDOugztuA90g6GHgpsCPwdWCEpGH5iX8ssCLrrwDGAcslDQN2AlbVygfVl2lWvqrQh5mZdUnbM4qIOCkixkbEeKovo6+MiKOAq4D3Z7XpwGU5PT+fk/OvjIjI8iPyrqg9gAnAjcBiYELe4TQ8+5ify7Tqw8zMumR9fkfxeeAzkvqpvk84L8vPA3bJ8s8AMwEi4nZgHnAH8FPghIh4Js8WPgEspLqral7WLfVhZmZd0smlp+dExNXA1Tl9N9UdS411ngA+0GL504HTm5QvABY0KW/ah5mZdY9/mW1mZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVtQ0KSS+VdKOkX0u6XdKXs3wPSTdI6pd0saThWb5NPu/P+eNrbZ2U5XdKOrBWPjXL+iXNrJU37cPMzLqnkzOKJ4F3RMQbgTcBUyVNAc4EzoqIPYE1wLFZ/1hgTZaflfWQNBE4Ang9MBX4lqStJG0FfBM4CJgIHJl1KfRhZmZd0jYoovJYPt06HwG8A7gky+cAh+X0tHxOzt9fkrL8ooh4MiJ+D/QD++ajPyLujoingIuAablMqz7MzKxLOvqOIj/53ww8ACwCfgc8FBFPZ5XlwJicHgMsA8j5DwO71MsblmlVvkuhj8bxzZDUJ6lvYGCgk5dkZmYd6igoIuKZiHgTMJbqDOC1G3RU6ygizo2ISRExadSoUb0ejpnZZmWd7nqKiIeAq4C3AiMkDctZY4EVOb0CGAeQ83cCVtXLG5ZpVb6q0IeZmXVJJ3c9jZI0Iqe3Bd4FLKEKjPdntenAZTk9P5+T86+MiMjyI/KuqD2ACcCNwGJgQt7hNJzqC+/5uUyrPszMrEuGta/CbsCcvDvpJcC8iPixpDuAiySdBvwKOC/rnwdcIKkfWE114Ccibpc0D7gDeBo4ISKeAZD0CWAhsBUwOyJuz7Y+36IPMzPrkrZBERG3AHs3Kb+b6vuKxvIngA+0aOt04PQm5QuABZ32YWZm3eNfZpuZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKzIQWFmZkUOCjMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytqGxSSxkm6StIdkm6X9Kks31nSIkl35b8js1ySzpbUL+kWSfvU2pqe9e+SNL1W/mZJt+YyZ0tSqQ8zM+ueTs4ongZOjIiJwBTgBEkTgZnAFRExAbginwMcBEzIxwzgHKgO+sDJwGRgX+Dk2oH/HOC42nJTs7xVH2Zm1iVtgyIi7ouIX+b0o8ASYAwwDZiT1eYAh+X0NGBuVK4HRkjaDTgQWBQRqyNiDbAImJrzdoyI6yMigLkNbTXrw8zMumSdvqOQNB7YG7gBGB0R9+WslcDonB4DLKsttjzLSuXLm5RT6KNxXDMk9UnqGxgYWJeXZGZmbXQcFJK2B34IfDoiHqnPyzOBGOKxraXUR0ScGxGTImLSqFGjNuQwzMy2OB0FhaStqULiwoj4URbfn5eNyH8fyPIVwLja4mOzrFQ+tkl5qQ8zM+uSTu56EnAesCQivlabNR8YvHNpOnBZrfzovPtpCvBwXj5aCBwgaWR+iX0AsDDnPSJpSvZ1dENbzfowM7MuGdZBnbcBHwJulXRzln0BmAXMk3QssBQ4POctAA4G+oHHgWMAImK1pK8Ai7PeqRGxOqc/DpwPbAtcng8KfZiZWZe0DYqIuA5Qi9n7N6kfwAkt2poNzG5S3gfs1aR8VbM+zMyse/zLbDMzK3JQmJlZkYPCzMyKHBRmZlbkoDAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVuSgMDOzIgeFmZkVOSjMzKyobVBImi3pAUm31cp2lrRI0l3578gsl6SzJfVLukXSPrVlpmf9uyRNr5W/WdKtuczZklTqw8zMumtYB3XOB74BzK2VzQSuiIhZkmbm888DBwET8jEZOAeYLGln4GRgEhDATZLmR8SarHMccAOwAJgKXF7ow8zW0fiZP+lJv/fMOqQn/drQantGERHXAqsbiqcBc3J6DnBYrXxuVK4HRkjaDTgQWBQRqzMcFgFTc96OEXF9RARVGB3Wpg8zM+uiF/sdxeiIuC+nVwKjc3oMsKxWb3mWlcqXNykv9fECkmZI6pPUNzAw8CJejpmZtbLeX2bnmUAMwVhedB8RcW5ETIqISaNGjdqQQzEz2+K82KC4Py8bkf8+kOUrgHG1emOzrFQ+tkl5qQ8zM+uiFxsU84HBO5emA5fVyo/Ou5+mAA/n5aOFwAGSRubdSwcAC3PeI5Km5N1ORze01awPMzProrZ3PUn6AbAfsKuk5VR3L80C5kk6FlgKHJ7VFwAHA/3A48AxABGxWtJXgMVZ79SIGPyC/ONUd1ZtS3W30+VZ3qoPMzProrZBERFHtpi1f5O6AZzQop3ZwOwm5X3AXk3KVzXrw8zMusu/zDYzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrMhBYWZmRQ4KMzMrclCYmVmRg8LMzIocFGZmVtT2Py4y29yMn/mTXg/BbJPiMwozMytyUJiZWZGDwszMihwUZmZW5KAwM7MiB4WZmRU5KMzMrGijDwpJUyXdKalf0sxej8fMbEuzUf/gTtJWwDeBdwHLgcWS5kfEHb0dmZl1opc/brxn1iE963tzs1EHBbAv0B8RdwNIugiYBjgoNnH+dbTZpmNjD4oxwLLa8+XA5MZKkmYAM/LpY5Lu7MLYem1X4MFeD2Ij4PVQ8XpoWAc6s4cj6a0Xuy3s3mrGxh4UHYmIc4Fzez2ObpLUFxGTej2OXvN6qHg9eB0M2hDrYWP/MnsFMK72fGyWmZlZl2zsQbEYmCBpD0nDgSOA+T0ek5nZFmWjvvQUEU9L+gSwENgKmB0Rt/d4WBuLLepSW4HXQ8Xrwetg0JCvB0XEULdpZmabkY390pOZmfWYg8LMzIocFJswSf8s6TeSbpF0qaQRvR5TL0j6gKTbJT0raYu6PdJ/4gYkzZb0gKTbej2WXpI0TtJVku7I/eFTQ9W2g2LTtgjYKyLeAPwWOKnH4+mV24D3Atf2eiDdVPsTNwcBE4EjJU3s7ah64nxgaq8HsRF4GjgxIiYCU4AThmp7cFBswiLiZxHxdD69nup3JluciFgSEVvCr/EbPfcnbiLiKWDwT9xsUSLiWmB1r8fRaxFxX0T8MqcfBZZQ/XWL9eag2Hx8BLi814Owrmr2J26G5MBgmzZJ44G9gRuGor2N+ncUBpL+E3h5k1lfjIjLss4XqU47L+zm2Lqpk/VgZiBpe+CHwKcj4pGhaNNBsZGLiHeW5kv6MHAosH9sxj+KabcetlD+Eze2FklbU4XEhRHxo6Fq15eeNmGSpgKfA94TEY/3ejzWdf4TN/YcSQLOA5ZExNeGsm0HxabtG8AOwCJJN0v6dq8H1AuS/ruk5cBbgZ9IWtjrMXVD3sgw+CdulgDztsQ/cSPpB8AvgNdIWi7p2F6PqUfeBnwIeEceD26WdPBQNOw/4WFmZkU+ozAzsyIHhZmZFTkozMysyEFhZmZFDgozMytyUJiZWZGDwszMiv4/oG8lj0Il1uQAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZFElEQVR4nO3de5hcdX3H8ffHgOEikmC2aUhCFiVe0NZgV6CPtk1BKhc12FYMVQg0NmLx1lJrUHwAKzW2KsqjokGQgAqkqCUIVSOXIkXAhYYACeoKickmJAvhEkBTE7794/wWTjYzOzM7uzObXz6v55lnz/x+5/KdM7OfPfM7Z2YVEZiZWV5e0O4CzMxs+Dnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HAfRSR9VdInhmldB0h6StKYdP9mSe8ZjnWn9f2XpDnDtb4GtvspSY9IerhC30xJawdZdtj270hS4RuSHpN0Z4X+UyTdOsjyVZ8bSZ2SQtJuVfrPkfTNoVdftaZBnxsbfhWfYBt+klYBE4GtwDZgBXAZsDAingWIiNMaWNd7IuLH1eaJiF8DL2qu6ue2dw5wUES8u7T+Y4Zj3Q3WcQBwBjAtIjY2uny9+3cUeCNwFDAlIp5udOF2PDc2+vjIvbXeGhH7ANOABcBHgYuHeyPVjsoycADw6FCCfSczDVg1lGC352X8e1AXh3sbRMQTEbEEeCcwR9JrACRdKulTaXqCpO9LelzSJkk/kfQCSZdThNy1adjln0tvtedK+jVwY5W33y+TdKekJyVdI2m/tK0d3jJLWiXpTZKOBj4GvDNt757U/9wwT6rrLEmrJW2UdJmkfVNffx1zJP06Dal8vNq+kbRvWr4vre+stP43AUuB/VMdlw6yjo+l7ayS9K5Se3n/jk/7ty8Nf3xf0pTSvKdIelDSZkkPDVjP30pamZb7oaRpqV2Szk/74ElJ9/Y/txVq3F/SkvTc9kj6u9Q+F/g68MfpcZ47yOP8bKrhIUnHlNrLz82YNN8jkh4EjhuwjgMl/Xd6nEuBCQP6D5d0W3od3iNp5oDt/Iuk/0nL/0jSdssPUvt8Sb9Ky62Q9PbU/sK0T/6gNO/vSXpGUke6/xZJy1JNt0n6w9K8qyR9VNJy4GntygEfEb614AasAt5Uof3XwPvS9KXAp9L0p4GvArun258AqrQuoBMIimGevYE9S227pXluBnqB16R5vgN8M/XNBNZWqxc4p3/eUv/NFENDAH8L9AAvpRgK+i5w+YDaLkp1vRbYAryqyn66DLgG2Cct+wtgbrU6Byw7k2LY6/PAWODPgKeBV1TYvy8B/grYK23rP4D/TH17A0+WlpsEvDpNz0qP9VUUw5pnAbelvjcDdwHjAKV5JlWp9RbgK8AewAygDzgi9Z0C3DrI4zwF+B3wd8AY4H3AutLro/zcnAY8AEwF9gNuGvC6+Glpf/0psLn0upgMPAocS3EgeFS631Hazq+Al6fn9mZgwSDPzdrS/XcA+6f1vjM9T5NS31eAz5Tm/RBwbZo+BNgIHJYe+xyK1+rY0ut2WXq8e7b7976dNx+5t986il+6gX5HESrTIuJ3EfGTSK/eQZwTEU9HxG+q9F8eEfdF8Xb/E8AJSidcm/Qu4PMR8WBEPAWcCcwecNR0bkT8JiLuAe6hCPntpFpmA2dGxOaIWAV8DjipwXo+ERFbIuK/geuAEwbOEBGPRsR3IuKZiNgMnEfxx6Dfs8BrJO0ZEesj4v7Ufhrw6YhYGRFbgX8FZqSj999R/KF4JUXQroyI9RUe51TgDcBHI+K3EbGM4mj95AYe4+qIuCgitgGLKF4rEyvMdwLwhYhYExGbKA4a+us4AHg9z++vW4BrS8u+G7g+Iq6PiGcjYinQTRH2/b4REb9Ir7nFFH+oaoqI/4iIdWm9VwG/BA5N3YuAEyUp3T8JuDxNzwO+FhF3RMS2iFhEcbBweGn1F6THW+33YJfgcG+/ycCmCu3/TnGE+KM0PDC/jnWtaaB/NcU7grreRtewf1pfed27sX3YlK9ueYbKJ3snpJoGrmtyA7U8FtuPVa9O9W1H0l6SvpaGfp6kOJIeJ2lMWv6dFEG+XtJ1kl6ZFp0GfDENCTxO8dwJmBwRNwJfAr4MbJS0UNKLK9S4P7Ap/VEZ6uN8bn9GxDNpstI+3Z8dn/dyX6X91W8a8I7+x5oe7xsp/pDsUAfVn9cdSDq5NLTyOMU7ygnp8dyR1jUz7feDgCWlms4YUNNUtn+Oa/0e7BIc7m0k6fUUv9A7XNaWjlzPiIiXAm8D/lHSkf3dVVZZ68h+amn6AIojzUco3hLvVaprDNDRwHrXUfzSlde9FdhQY7mBHkk1DVxXbwPrGC9p7wHLr6sw3xnAK4DDIuLFFEMSUAQ1EfHDiDiKIsgeoBhWgiI43hsR40q3PSPitrTcBRHxR8DBFMMVH6mw7XXAfpL2aeJx1ms9Oz7v5b5K+6vfGop3e+XHundELGimoPQu5yLg/cBLImIccB9p3yeLKN45nARcHRG/LdV03oCa9oqIK0rL+qtucbi3haQXS3oLcCXF+Oa9FeZ5i6SD0lvTJygun3w2dW+gGN9u1LslHSxpL+CTFL802yjGtfeQdJyk3SnGkceWltsAdEqq9nq5AviHdHLuRRRDFVelYYu6pVoWA+dJ2ieFwD8CjV53fW46MfcnwFsoxtMH2gf4DfC4ihPLZ/d3SJooaVYKvS3AUzy/778KnCnp1WnefSW9I02/XtJhaR8+Dfy2tFz5ca4BbgM+LWmPdEJw7hAeZz0WAx+UNEXSeOC5d4ARsZpimKV/f70ReGtp2W8Cb5X05nRidg8VJ9+n0Jy9KQK4D0DSqRRH7mXfBN5OEfCXldovAk5L+1mS9k6v232w7TjcW+taSZspjj4+TnEi69Qq804HfkwRLD8FvhIRN6W+TwNnpbel/9TA9i+nOKn4MMWJvA9CcfUO8PcU4769FMFUvnqmPxwflXR3hfVektZ9C/AQRah9oIG6yj6Qtv8gxTuab6f11+th4DGKo+NvAadFxAMV5vsCxUnAR4DbgR+U+l5A8UdlHcWwy59RnLQkIr4HfAa4Mg3n3Af0X6nyYorweYxieONRiuG1Sk6kOGG8DvgecHYM8rmFJlwE/JDiPMfdFCe7y/6G4uTkJoo/cM8FafojNIviaqk+itftR2gyNyJiBcW5lJ9SHDj8AfA/A+ZZk+oN4Cel9m6KE8lfotjPPRQnmG2A/rPrZmajiqRLgHURcVa7a9kZ7brXgJrZqCWpE/hLiksfbQg8LGNmo4qkf6EY7vr3iHio3fXsrDwsY2aWIR+5m5llaFSMuU+YMCE6OzvbXYaZ2U7lrrvueiQiOir1jYpw7+zspLu7u91lmJntVCStrtbnYRkzsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczswyNik+omtXSOf+6tm171YLj2rZts6HykbuZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYZqhrukPSTdKekeSfdLOje1XyrpIUnL0m1GapekCyT1SFou6XUj/SDMzGx79Xz9wBbgiIh4StLuwK2S/iv1fSQirh4w/zHA9HQ7DLgw/TQzsxapeeQehafS3d3TLQZZZBZwWVrudmCcpEnNl2pmZvWqa8xd0hhJy4CNwNKIuCN1nZeGXs6XNDa1TQbWlBZfm9rMzKxF6gr3iNgWETOAKcChkl4DnAm8Eng9sB/w0UY2LGmepG5J3X19fQ2WbWZmg2noapmIeBy4CTg6ItanoZctwDeAQ9NsvcDU0mJTUtvAdS2MiK6I6Oro6Bha9WZmVlE9V8t0SBqXpvcEjgIe6B9HlyTgeOC+tMgS4OR01czhwBMRsX5Eqjczs4rquVpmErBI0hiKPwaLI+L7km6U1AEIWAaclua/HjgW6AGeAU4d/rLNzGwwNcM9IpYDh1RoP6LK/AGc3nxpZmY2VP6EqplZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWWoZrhL2kPSnZLukXS/pHNT+4GS7pDUI+kqSS9M7WPT/Z7U3zmyD8HMzAaq58h9C3BERLwWmAEcLelw4DPA+RFxEPAYMDfNPxd4LLWfn+YzM7MWqhnuUXgq3d093QI4Arg6tS8Cjk/Ts9J9Uv+RkjRsFZuZWU11jblLGiNpGbARWAr8Cng8IramWdYCk9P0ZGANQOp/AnhJhXXOk9Qtqbuvr6+5R2FmZtupK9wjYltEzACmAIcCr2x2wxGxMCK6IqKro6Oj2dWZmVlJQ1fLRMTjwE3AHwPjJO2WuqYAvWm6F5gKkPr3BR4dlmrNzKwu9Vwt0yFpXJreEzgKWEkR8n+dZpsDXJOml6T7pP4bIyKGs2gzMxvcbrVnYRKwSNIYij8GiyPi+5JWAFdK+hTwv8DFaf6Lgcsl9QCbgNkjULeZmQ2iZrhHxHLgkArtD1KMvw9s/y3wjmGpzszMhsSfUDUzy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MM1Qx3SVMl3SRphaT7JX0otZ8jqVfSsnQ7trTMmZJ6JP1c0ptH8gGYmdmOav6DbGArcEZE3C1pH+AuSUtT3/kR8dnyzJIOBmYDrwb2B34s6eURsW04Czczs+pqHrlHxPqIuDtNbwZWApMHWWQWcGVEbImIh4Ae4NDhKNbMzOrT0Ji7pE7gEOCO1PR+ScslXSJpfGqbDKwpLbaWCn8MJM2T1C2pu6+vr+HCzcysurrDXdKLgO8AH46IJ4ELgZcBM4D1wOca2XBELIyIrojo6ujoaGRRMzOroa5wl7Q7RbB/KyK+CxARGyJiW0Q8C1zE80MvvcDU0uJTUpuZmbVIPVfLCLgYWBkRny+1TyrN9nbgvjS9BJgtaaykA4HpwJ3DV7KZmdVSz9UybwBOAu6VtCy1fQw4UdIMIIBVwHsBIuJ+SYuBFRRX2pzuK2XMzFqrZrhHxK2AKnRdP8gy5wHnNVGXmZk1wZ9QNTPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLUD1fP2C2S+ucf11btrtqwXFt2a7lwUfuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhur5B9lTJd0kaYWk+yV9KLXvJ2mppF+mn+NTuyRdIKlH0nJJrxvpB2FmZtur58h9K3BGRBwMHA6cLulgYD5wQ0RMB25I9wGOAaan2zzgwmGv2szMBlUz3CNifUTcnaY3AyuBycAsYFGabRFwfJqeBVwWhduBcZImDXvlZmZWVUNj7pI6gUOAO4CJEbE+dT0MTEzTk4E1pcXWpraB65onqVtSd19fX4Nlm5nZYOoOd0kvAr4DfDginiz3RUQA0ciGI2JhRHRFRFdHR0cji5qZWQ11fSukpN0pgv1bEfHd1LxB0qSIWJ+GXTam9l5gamnxKanNMtCub0g0s8bUc7WMgIuBlRHx+VLXEmBOmp4DXFNqPzldNXM48ERp+MbMzFqgniP3NwAnAfdKWpbaPgYsABZLmgusBk5IfdcDxwI9wDPAqcNasZmZ1VQz3CPiVkBVuo+sMH8ApzdZl5mZNcGfUDUzy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MM1Qx3SZdI2ijpvlLbOZJ6JS1Lt2NLfWdK6pH0c0lvHqnCzcysunqO3C8Fjq7Qfn5EzEi36wEkHQzMBl6dlvmKpDHDVayZmdWnZrhHxC3ApjrXNwu4MiK2RMRDQA9waBP1mZnZEDQz5v5+ScvTsM341DYZWFOaZ21q24GkeZK6JXX39fU1UYaZmQ001HC/EHgZMANYD3yu0RVExMKI6IqIro6OjiGWYWZmlQwp3CNiQ0Rsi4hngYt4fuilF5hamnVKajMzsxYaUrhLmlS6+3ag/0qaJcBsSWMlHQhMB+5srkQzM2vUbrVmkHQFMBOYIGktcDYwU9IMIIBVwHsBIuJ+SYuBFcBW4PSI2DYypZuZWTU1wz0iTqzQfPEg858HnNdMUWZm1hx/QtXMLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8tQzX/WYWbt0Tn/urZsd9WC49qyXRtePnI3M8tQzXCXdImkjZLuK7XtJ2mppF+mn+NTuyRdIKlH0nJJrxvJ4s3MrLJ6jtwvBY4e0DYfuCEipgM3pPsAxwDT020ecOHwlGlmZo2oGe4RcQuwaUDzLGBRml4EHF9qvywKtwPjJE0armLNzKw+Qx1znxgR69P0w8DEND0ZWFOab21qMzOzFmr6hGpEBBCNLidpnqRuSd19fX3NlmFmZiVDDfcN/cMt6efG1N4LTC3NNyW17SAiFkZEV0R0dXR0DLEMMzOrZKjhvgSYk6bnANeU2k9OV80cDjxRGr4xM7MWqfkhJklXADOBCZLWAmcDC4DFkuYCq4ET0uzXA8cCPcAzwKkjULOZmdVQM9wj4sQqXUdWmDeA05styszMmuNPqJqZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGav4P1cFIWgVsBrYBWyOiS9J+wFVAJ7AKOCEiHmuuTDMza8RwHLn/eUTMiIiudH8+cENETAduSPfNzKyFRmJYZhawKE0vAo4fgW2Ymdkgmg33AH4k6S5J81LbxIhYn6YfBiZWWlDSPEndkrr7+vqaLMPMzMqaGnMH3hgRvZJ+D1gq6YFyZ0SEpKi0YEQsBBYCdHV1VZzHzMyGpqkj94joTT83At8DDgU2SJoEkH5ubLZIMzNrzJCP3CXtDbwgIjan6b8APgksAeYAC9LPa4ajUDNrjc7517Vt26sWHNe2beemmWGZicD3JPWv59sR8QNJPwMWS5oLrAZOaL5MMzNrxJDDPSIeBF5bof1R4MhmijIzs+b4E6pmZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZajZrx+wNmjnh0zMbOfgI3czsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczswz5E6pmNmq069PXOf57Px+5m5llyOFuZpahERuWkXQ08EVgDPD1iFgwUttqF3+Bl5mNViMS7pLGAF8GjgLWAj+TtCQiVgz3thywZtasdubISI33j9SwzKFAT0Q8GBH/B1wJzBqhbZmZ2QAjNSwzGVhTur8WOKw8g6R5wLx09ylJPx+hWnZmE4BH2l3EKOV9U533TWWjcr/oM00tPq1aR9suhYyIhcDCdm1/ZyCpOyK62l3HaOR9U533TWW72n4ZqWGZXmBq6f6U1GZmZi0wUuH+M2C6pAMlvRCYDSwZoW2ZmdkAIzIsExFbJb0f+CHFpZCXRMT9I7GtzHnYqjrvm+q8byrbpfaLIqLdNZiZ2TDzJ1TNzDLkcDczy5DDfRSRtJ+kpZJ+mX6OrzLfNknL0i3rE9WSjpb0c0k9kuZX6B8r6arUf4ekztZX2Xp17JdTJPWVXifvaUedrSbpEkkbJd1XpV+SLkj7bbmk17W6xlZxuI8u84EbImI6cEO6X8lvImJGur2tdeW1VulrLI4BDgZOlHTwgNnmAo9FxEHA+UBzHwnZCdS5XwCuKr1Ovt7SItvnUuDoQfqPAaan2zzgwhbU1BYO99FlFrAoTS8Cjm9jLaNBPV9jUd5nVwNHSlILa2wHf71HFRFxC7BpkFlmAZdF4XZgnKRJramutRzuo8vEiFifph8GJlaZbw9J3ZJul5TzH4BKX2Mxudo8EbEVeAJ4SUuqa5969gvAX6Whh6slTa3Qvyuqd9/t9PyfmFpM0o+B36/Q9fHynYgISdWuU50WEb2SXgrcKOneiPjVcNdqO7VrgSsiYouk91K8uzmizTVZCzncWywi3lStT9IGSZMiYn16q7ixyjp6088HJd0MHALkGO71fI1F/zxrJe0G7As82pry2qbmfomI8j74OvBvLahrZ7DLfDWKh2VGlyXAnDQ9B7hm4AySxksam6YnAG8Ahv178keJer7GorzP/hq4MfL/ZF7N/TJgHPltwMoW1jeaLQFOTlfNHA48URoKzYqP3EeXBcBiSXOB1cAJAJK6gNMi4j3Aq4CvSXqW4o/zgpH4JyijQbWvsZD0SaA7IpYAFwOXS+qhOJE2u30Vt0ad++WDkt4GbKXYL6e0reAWknQFMBOYIGktcDawO0BEfBW4HjgW6AGeAU5tT6Ujz18/YGaWIQ/LmJllyOFuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYb+H+IiNciUeMU8AAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbu0lEQVR4nO3debRcZZ3u8e9jAqiAJJh0gCQShFwh0IoYAZe2ItEQBg332rBwoQSI5uIFr1712iC2QQaF9iqiq8WmJRIQgTSIpIFuiIxN2wxBEBnliIlJIMkhE0FkCPzuH+97YKdSdU7VmeqE9/msddbZ+93v3vvdUz21h6pSRGBmZuV6Q7sbYGZm7eUgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMr3GYXBJJ+LOnv+2lab5P0rKRhuf9WSZ/pj2nn6f2bpBn9Nb0W5numpKclLR/AeTwr6e1N1g1Juw1UWzZXA7V/SDpA0tJuhnd7DHW3vSQdK+mO/mhnyfr7taavhlQQSFok6S+S1ktaK+nXkk6Q9Go7I+KEiDijyWl9pLs6EfGniNgmIl7uh7afJulnNdM/OCLm9nXaLbbjbcCXgUkRscNAzSevtyf6Op1SXliGyv6R59vUMTSYJE3IATS8DfPu131wc9ynh1QQZB+LiG2BnYGzgb8DLuzvmbRjhxskbwNWRcTKdjfEzIaObl/zImLI/AGLgI/UlO0LvALslfsvAs7M3aOAa4G1wGrgP0jhdkke5y/As8BXgQlAADOBPwG3V8qG5+ndCnwbuBt4BrgG2D4POwBYWq+9wDTgReClPL/fVqb3mdz9BuDrwGJgJXAxsF0e1tWOGbltTwOndrOetsvjd+bpfT1P/yN5mV/J7biozri3AZ/I3e/P8z00908B7q/UPR54BFgD3ADsXBkWwG65+63Av+Z1dg9wJnBHTd0TgMfztvpHQMAewPPAy7m9a3P9Q4CHgfXAMuAr3ayLz+Y2rs/j7JPL98jrfy3wEPDxyjgX5TZcl8e7C9i1Mnx3YAFpn3oMOLKFcfesjLsC+FqT+8exwB3A/8vr+4/AwZXp7kLaZ9cDv8pt+FmDdXIAsJR0ZrgSeAo4rmYZzqz0/99c58m8zWu37fy8be8GzqjZtr1eVzVt/lOe77P57310c8x0sy905LbMB3aqOb6GV+reCnyGxvvgRcCP87KtJx03O/d2enXaWt32uwI3A6tIx/6lwIjKtrmqZtwfAOdVXgsuzNtvGenYG1bZp/4TODdP+8yG626gX9xb+aNOEFR2ks/V7sSkF+0fA1vkv78BVG9alY13MbA18KbaDZo3zjJgr1znKvLBRjdBkLtPo+bArNnYx5N20rcD2wC/AC6pads/53a9C3gB2KPBerqYFFLb5nF/D8xs1M6acU8Hfpi7vwb8ATinMqxrB5ue27sHMJx0QP66Mp3qi8Xl+e/NwCRgCZsGwbXACNIZSycwrbKz3lHTxqeAv8ndI8kv7nWW5Yi8vd5LCpbdSGeSW+S2fw3YEjiQdDC/o7IPrSK9yRhOOvAuz8O2zu0/Lg97N+ngnNTEuNvmtn8ZeGPu36/J/eNYUlB8FhgGfI70wty1P/8XKSS2BD5AemHuLgg25O25BSlYnwNG1jmGppECq2uf/3mdbTsvD9srr+87+rqu6rR5Apu+uDY8ZuqMf2Ce9z7AVsAPgdu7mXbtuq/dBy8i7TMfzNM7r7LcLU+vTnur9XcDPprnM5oU+N/Pw3YE/sxrwTCcFIrvyf1XA/+Ut8VfkcL6f1basQH4fB7vTY3aMxQvDdXzJLB9nfKXSCtq54h4KSL+I/Ia6MZpEfHniPhLg+GXRMSDEfFn4O+BI7tuJvfR0cD3IuKJiHgWOAU4quZ07ZsR8ZeI+C3wW1IgbCS35SjglIhYHxGLgO8Cn26yHbcBH8rdHySFaVf/h/JwSO/gvx0Rj0TEBuBbwN6Sdq7Tnk8AsyPiuYh4GKh33fvsiFgbEX8CbgH27qaNLwGTJL0lItZExG8a1PsM8A8RcU8kHRGxGNif9MJxdkS8GBE3k4Lok5Vxr46Iu/OyXVppz2HAooj4aURsiIj7SG8Ijmhy3OUR8d2IeD5vn7u6Wc5aiyPinyPds5pL2rfH5Ps+7wW+kZfnDtI73u68BJyej4vrSe9O31Gn3pHATyv7/GldAyrb9hv5mHmQjbdtX9ZVM5o5Zqp150TEbyLihVz3fZImtDC/WtdFxO15eqfm6Y3vw/Tqyvvtgoh4ISI6ge+Rj8mIeIoUDF3rdBrwdETcK2kMKeS/mLfPStK7/6Mqk38yIn6Yt0+j17zNJgjGkk73an2H9I7hRklPSDq5iWktaWH4YtI7qlFNtbJ7O+XpVac9HBhTKas+5fMc6cWs1qjcptppjW2yHf8F/Le8E+1NOrsYL2kU6Z3b7bnezsB5+aZ916U31ZnP6Lwc1fVWbx03s2xdPkHawRdLuk3S+xrUG086o6m1E7AkIl6plNWuo0bt2RnYr2u587IfDezQxLiN2tOsV6cbEc/lzm1Iy7O6UgY978er8otvvXZW7cSm+3yXetu2Orwv66oZzRwzdevm4FhF88dFPa8ud57e6jyffiVpjKTLJS2T9AzwMzZ+zZkLfCp3f4p06RteO/t9qrL+/4l0ZrDJMnRnyAeBpPeSNuYmd+HzO64vR8TbgY8DX5I0pWtwg0n2dMZQTfy3kd5ZPU06PXtzpV3DSAdKs9N9krThqtPeQDotb8XTuU2101rWzMj5xeRe4AvAgxHxIvBr4EvAHyLi6Vx1CekUc0Tl700R8euaSXbm5RhXKWvlXdMm6y2/w59O2qF/Sbo0Uc8S0vXVWk+Swq26fze7jpYAt9Us9zYR8bkmx230SG1P+0d3ngK2l/TmSll/vTN9ik33+S5d27bR8L6sq1r11k8rx8xGdSVtTbq/sYx07ELl+GXjsGq0bV5dbknbkK5KPNmH6TXyrTzOX0fEW0gv9qoM/yXwTkl7kc7CLs3lS0iXkEdV1v9bImLPVtsyZINA0lskHUa6RvmziPhdnTqHSdpNkoB1pBs0Xe8CV9D4oOzOpyRNygfd6cCV+VT998AbJR0qaQvSNfOtKuOtACbUvPhUXQb8H0m75J3qW8AVNe/aepTbMg84S9K2+VLNl0jvIpp1G3ASr10GurWmH9K9l1Mk7QkgaTtJ1VP+ant+AZwm6c2SdgeOaaEtK4BxkrbM89lS0tGStouIl0jXwl9pMO5PgK9Ieo+S3fL6uIv07vOrkraQdADwMdK+1JNrSWdMn87jbiHpvZL2aHLcHSV9UdJWefvsV1nO7vaPhvLlroWkdbxlPkP6WKvTaWAecGxln59dmW/ttp1EeqChS1/WVa1O0nauHrOtHDOXAcdJ2lvSVrnuXRGxKF9uWUY6todJOp6N30BstA9WHCLpA7n8DODOiFjSh+k1si3p0t06SWNJN4hfFRHPA1eS7t/cnS+vdl02uhH4bn69fIOkXSV9iBYNxSD4V0nrSWl3Kul62XEN6k4kPUHxLOmSx48i4pY87NvA1/Mp01damP8lpBtFy0k3/P43QESsA/4X6cWn611G9UM7/5L/r5JU75r2nDzt20lPhDxPuonTG5/P83+CdKb08zz9Zt1G2vlub9BPRFwNnANcnk9XHwQObjC9k0hPLywnLeNlpHcqzbiZ9FTPckldZyOfBhbl+Z5AutywiYj4F+As0vKvJ71z2j6f5Xwst/dp4EfAMRHxaE+NiYj1wFTSddYn8zKdw8ah3924H83zXk56SurDeXBP+0dPjiY9SbOK9GTIFTS/jhuKiH8Dvk/aDh35f9VJpMs5y0nHxU8r4/Z6XdVpx3Okbfmf+ZjdnxaOmYj4Feme3lWks5xd2fha+WdJL7CrSE92Vc9s6+2DkPar2aRLQu/htcszvZ1eI98k3eReR3rC6hd16swF/prXLgt1OYb0AMHDpKfNriTdW2pJ1xMJZv1G0jnADhExo8fK1iuSrgAejYjZPVa2lkm6iPT03dfb3RZ49YOij5KOq2f6e/pD8YzANjOSdpf0znx5Zl/SZzWubne7Xk/yJZdd8+n/NNLjvb9sd7ts4OXLiV8iPXrb7yEA6Q68WV9tS7octBPp+uh3SZ9zsP6zA+mSwVtJlyQ/lx/XtNexfNN7BemJqGkDNh9fGjIzK5svDZmZFW5IXxoaNWpUTJgwod3NMDPbrNx7771PR8TonmsmQzoIJkyYwMKFC9vdDDOzzYqkxT3Xeo0vDZmZFc5BYGZWOAeBmVnhHARmZoVzEJiZFc5BYGZWOAeBmVnhHARmZoVzEJiZFa6pTxZLGkH6QZa9SD99djzwGOnHMSYAi4AjI2JN/rWw80i/OfsccGzXj49LmkH6ZS+AMyOi3o+cm9kQNeHk69oy30VnH9qW+Zai2TOC84B/j4jdgXcBjwAnAzdFxETgptwP6VehJua/WcD5AJK2J/3az36kH0mfLWlkPy2HmZn1Uo9BIGk74IPAhQAR8WJErCX9MEbXO/q5wOG5ezpwcSR3AiMk7QgcBCyIiNURsQZYwAB+v7aZmTWnmTOCXUg/LP1TSfdJ+kn+sYQx+ceTIf1W6ZjcPZb0e8NdluayRuUbkTRL0kJJCzs7O1tbGjMza1kzQTCc9MPK50fEu0k/mn5ytUKkX7fpl1+4iYgLImJyREwePbrpb1E1M7NeaiYIlpJ+xPmu3H8lKRhW5Es+5P8r8/BlwPjK+ONyWaNyMzNrox6DICKWA0skvSMXTQEeBuYDM3LZDF77jdr5wDH5h8z3B9blS0g3AFMljcw3iafmMjMza6Nmf5jm88ClkrYEngCOI4XIPEkzST+sfGSuez3p0dEO0uOjxwFExGpJZwD35HqnR8TqflkKMzPrtaaCICLuBybXGTSlTt0ATmwwnTnAnFYaaGZmA8ufLDYzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PCOQjMzArnIDAzK1xTQSBpkaTfSbpf0sJctr2kBZIez/9H5nJJ+oGkDkkPSNqnMp0Zuf7jkmYMzCKZmVkrWjkj+HBE7B0Rk3P/ycBNETERuCn3AxwMTMx/s4DzIQUHMBvYD9gXmN0VHmZm1j59uTQ0HZibu+cCh1fKL47kTmCEpB2Bg4AFEbE6ItYAC4BpfZi/mZn1g2aDIIAbJd0raVYuGxMRT+Xu5cCY3D0WWFIZd2kua1S+EUmzJC2UtLCzs7PJ5pmZWW8Nb7LeByJimaS/AhZIerQ6MCJCUvRHgyLiAuACgMmTJ/fLNM3MrLGmzggiYln+vxK4mnSNf0W+5EP+vzJXXwaMr4w+Lpc1KjczszbqMQgkbS1p265uYCrwIDAf6HryZwZwTe6eDxyTnx7aH1iXLyHdAEyVNDLfJJ6ay8zMrI2auTQ0BrhaUlf9n0fEv0u6B5gnaSawGDgy178eOAToAJ4DjgOIiNWSzgDuyfVOj4jV/bYkZmbWKz0GQUQ8AbyrTvkqYEqd8gBObDCtOcCc1ptpZmYDxZ8sNjMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrXNNBIGmYpPskXZv7d5F0l6QOSVdI2jKXb5X7O/LwCZVpnJLLH5N0UH8vjJmZta6VM4IvAI9U+s8Bzo2I3YA1wMxcPhNYk8vPzfWQNAk4CtgTmAb8SNKwvjXfzMz6qqkgkDQOOBT4Se4XcCBwZa4yFzg8d0/P/eThU3L96cDlEfFCRPwR6AD27Y+FMDOz3mv2jOD7wFeBV3L/W4G1EbEh9y8FxubuscASgDx8Xa7/anmdcV4laZakhZIWdnZ2trAoZmbWGz0GgaTDgJURce8gtIeIuCAiJkfE5NGjRw/GLM3Mija8iTrvBz4u6RDgjcBbgPOAEZKG53f944Bluf4yYDywVNJwYDtgVaW8S3UcMzNrkx7PCCLilIgYFxETSDd7b46Io4FbgL/N1WYA1+Tu+bmfPPzmiIhcflR+qmgXYCJwd78tiZmZ9UozZwSN/B1wuaQzgfuAC3P5hcAlkjqA1aTwICIekjQPeBjYAJwYES/3Yf5mZtYPWgqCiLgVuDV3P0Gdp34i4nngiAbjnwWc1Wojzcxs4PiTxWZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhesxCCS9UdLdkn4r6SFJ38zlu0i6S1KHpCskbZnLt8r9HXn4hMq0Tsnlj0k6aKAWyszMmtfMGcELwIER8S5gb2CapP2Bc4BzI2I3YA0wM9efCazJ5efmekiaBBwF7AlMA34kaVh/LoyZmbWuxyCI5Nncu0X+C+BA4MpcPhc4PHdPz/3k4VMkKZdfHhEvRMQfgQ5g335ZCjMz67Wm7hFIGibpfmAlsAD4A7A2IjbkKkuBsbl7LLAEIA9fB7y1Wl5nnOq8ZklaKGlhZ2dn60tkZmYtaSoIIuLliNgbGEd6F7/7QDUoIi6IiMkRMXn06NEDNRszM8taemooItYCtwDvA0ZIGp4HjQOW5e5lwHiAPHw7YFW1vM44ZmbWJs08NTRa0ojc/Sbgo8AjpED421xtBnBN7p6f+8nDb46IyOVH5aeKdgEmAnf314KYmVnvDO+5CjsCc/MTPm8A5kXEtZIeBi6XdCZwH3Bhrn8hcImkDmA16UkhIuIhSfOAh4ENwIkR8XL/Lo6ZmbWqxyCIiAeAd9cpf4I6T/1ExPPAEQ2mdRZwVuvNNDOzgeJPFpuZFc5BYGZWOAeBmVnhmrlZbGZDyISTr2t3E+x1xmcEZmaFcxCYmRXOQWBmVjgHgZlZ4RwEZmaFcxCYmRXOQWBmVjgHgZlZ4RwEZmaFcxCYmRXOQWBmVjgHgZlZ4RwEZmaFcxCYmRXOQWBmVjgHgZlZ4RwEZmaFcxCYmRXOQWBmVjgHgZlZ4RwEZmaF6zEIJI2XdIukhyU9JOkLuXx7SQskPZ7/j8zlkvQDSR2SHpC0T2VaM3L9xyXNGLjFMjOzZjVzRrAB+HJETAL2B06UNAk4GbgpIiYCN+V+gIOBiflvFnA+pOAAZgP7AfsCs7vCw8zM2qfHIIiIpyLiN7l7PfAIMBaYDszN1eYCh+fu6cDFkdwJjJC0I3AQsCAiVkfEGmABMK1fl8bMzFrW0j0CSROAdwN3AWMi4qk8aDkwJnePBZZURluayxqV185jlqSFkhZ2dna20jwzM+uFpoNA0jbAVcAXI+KZ6rCICCD6o0ERcUFETI6IyaNHj+6PSZqZWTeaCgJJW5BC4NKI+EUuXpEv+ZD/r8zly4DxldHH5bJG5WZm1kbNPDUk4ELgkYj4XmXQfKDryZ8ZwDWV8mPy00P7A+vyJaQbgKmSRuabxFNzmZmZtdHwJuq8H/g08DtJ9+eyrwFnA/MkzQQWA0fmYdcDhwAdwHPAcQARsVrSGcA9ud7pEbG6X5bCzMx6rccgiIg7ADUYPKVO/QBObDCtOcCcVhpoZmYDy58sNjMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrXI9BIGmOpJWSHqyUbS9pgaTH8/+RuVySfiCpQ9IDkvapjDMj139c0oyBWRwzM2tVM2cEFwHTaspOBm6KiInATbkf4GBgYv6bBZwPKTiA2cB+wL7A7K7wMDOz9uoxCCLidmB1TfF0YG7ungscXim/OJI7gRGSdgQOAhZExOqIWAMsYNNwMTOzNujtPYIxEfFU7l4OjMndY4EllXpLc1mj8k1ImiVpoaSFnZ2dvWyemZk1q883iyMigOiHtnRN74KImBwRk0ePHt1fkzUzswZ6GwQr8iUf8v+VuXwZML5Sb1wua1RuZmZt1tsgmA90PfkzA7imUn5Mfnpof2BdvoR0AzBV0sh8k3hqLjMzszYb3lMFSZcBBwCjJC0lPf1zNjBP0kxgMXBkrn49cAjQATwHHAcQEaslnQHck+udHhG1N6DNzKwNegyCiPhkg0FT6tQN4MQG05kDzGmpdWZmNuD8yWIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxwDgIzs8L1+MliM6tvwsnXtbsJZv3CZwRmZoVzEJiZFc5BYGZWOAeBmVnhfLPYzIa8dt2YX3T2oW2Z72DzGYGZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeEcBGZmhXMQmJkVzkFgZlY4B4GZWeH8yWLbrPmroM36btDPCCRNk/SYpA5JJw/2/M3MbGODGgSShgH/CBwMTAI+KWnSYLbBzMw2NtiXhvYFOiLiCQBJlwPTgYcHuR2vS75MYta/2nlMDeYX3g12EIwFllT6lwL7VStImgXMyr3PSnpsANoxCnh6AKb7euJ11DOvo+55/fSs4TrSOX2a7s6tVB5yN4sj4gLggoGch6SFETF5IOexufM66pnXUfe8fno2VNbRYN8sXgaMr/SPy2VmZtYmgx0E9wATJe0iaUvgKGD+ILfBzMwqBvXSUERskHQScAMwDJgTEQ8NZhuyAb309DrhddQzr6Puef30bEisI0VEu9tgZmZt5K+YMDMrnIPAzKxwxQaBpDMkPSDpfkk3Stqp3W0aaiR9R9KjeT1dLWlEu9s0lEg6QtJDkl6R1PZHAIcSf5VM9yTNkbRS0oPtbgsUHATAdyLinRGxN3At8I12N2gIWgDsFRHvBH4PnNLm9gw1DwL/A7i93Q0ZSvxVMk25CJjW7kZ0KTYIIuKZSu/WgO+a14iIGyNiQ+69k/S5D8si4pGIGIhPvm/uXv0qmYh4Eej6KhnLIuJ2YHW729FlyH2yeDBJOgs4BlgHfLjNzRnqjgeuaHcjbLPQ41fJ2NDyug4CSb8Cdqgz6NSIuCYiTgVOlXQKcBIwe1AbOAT0tI5ynVOBDcClg9m2oaCZ9WO2uXtdB0FEfKTJqpcC11NgEPS0jiQdCxwGTIkCP3TSwj5kr/FXyWxmir1HIGlipXc68Gi72jJUSZoGfBX4eEQ81+722GbDXyWzmSn2k8WSrgLeAbwCLAZOiAi/a6mQ1AFsBazKRXdGxAltbNKQIum/Az8ERgNrgfsj4qD2tmpokHQI8H1e+yqZs9rcpCFF0mXAAaSvoV4BzI6IC9vWnlKDwMzMkmIvDZmZWeIgMDMrnIPAzKxwDgIzs8I5CMzMCucgMDMrnIPAzKxw/x9ixn/Bvne4qAAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbAElEQVR4nO3dfbhcVWHv8e+PACIaJJiImFe4hgqigB6DfdSCLWB8KfE+9mqoaGihub6grS+9gihoaKvWR229YiHFXAQrUEEwLVGILxQtRhIUQUAgBpQT0AQCCIJA4Hf/2OvoZJxzZp9z5ry48/s8zzxnz1p771lrz5zf7Fl7z2zZJiIimmuHiW5ARESMrQR9RETDJegjIhouQR8R0XAJ+oiIhkvQR0Q0XIJ+EpN0hqQP9mhdcyQ9KGlKuX+FpON7se6yvq9KWtKr9Q3jcf9O0t2Sft6h7jBJ/UMs27PtO5ZU+X+S7pV09US3Z7Qk3S7p8Ilux/Zkx4luwPZK0u3AnsBW4HHgRuAcYLntJwBsv2UY6zre9tcHm8f2z4Cnjq7Vv3m8DwHPtn1My/pf2Yt1D7Mdc4D3AHNtbxru8nW37yTwUuAIYJbtX/VyxZ2ey8m0vuiN7NFPrD+1PRWYC3wUeB/wuV4/iKSmvqHPAe4ZScj/npkL3N7rkN+eNPh/oB7buU3ADbgdOLytbAHwBHBAuX828Hdlejrwn8B9wBbg21Rv1OeWZR4GHgT+DzAPMHAc8DPgypayHcv6rgA+AlwN/BL4CrBHqTsM6O/UXmAh8CjwWHm8H7as7/gyvQPwAeCnwCaqTypPK3UD7VhS2nY3cPIQ2+lpZfnNZX0fKOs/vPT5idKOszssexjQD7y/PM7twBtb6lu377SyfTcD95bpWS3zHgtsAB4Abmtbz18CN5XlLqP6hAEg4FNlG/wSuH7gue3Q1mcBK8tzux74q1J+HPBrqk99DwIf7rDsUNt7pM9lz14bQ732qV7z36V6Xd8FfAbYudSdDnyibdmVwLtattlF5Tm7DXhny3wfAi4EvlD6cPxE/89PaN5MdAO21xsdgr6U/wx4a5luDaKPAGcAO5XbywB1Whe/DdNzgKcAT6Zz0G8EDijzXAR8odQN+s9cpj80MG9L/RX8Nuj/kiqs9qEaLvoycG5b2/61tOtA4BFgv0G20zklaKaWZW8BjhusnW3LHkY1NPZJ4EnAocCvgD/osH2fDrwO2LU81peAS0rdU0pYDCy3F/DcMr2o9HU/qqHQDwBXlbpXANcAu1OF/n7AXoO09Urgs8AuwEFU4fXHpe5Y4DtD9HOo7T3S57Jnr42hXvvAC4EXl203j+oN829K3QLgTmCHcn868BDVkOcOZdueAuxc+r4BeEVLOx4DXlvmffJE/89P5C1DN5PPncAeHcofowqYubYfs/1tl1f0ED5k+1e2Hx6k/lzbP3I1JPBB4PUDB2tH6Y3AJ21vsP0gcBKwuO3j84dtP2z7h8APqQJ/G6Uti4GTbD9g+3bgE8CbhtmeD9p+xPZ/AZcCr2+fwfY9ti+y/ZDtB4C/p3pjGPAEcICkJ9u+y/YNpfwtwEds32R7K/APwEGS5lI9Z1OB51C9Kd9k+64O/ZwNvAR4n+1f274WOAt4c83+1dnewzVWr41t2L7G9hrbW8vzeyZlu9u+Grgf+JMy+2LgCtu/AF4EzLC9zPajtjdQ7Twsbln9d21fYvuJIf4HtgsJ+slnJtXH93Yfp9pru1zSBkkn1ljXHcOo/ynVJ4XptVo5tGeV9bWue0eqPbEBrWfJPETnA8XTS5va1zVzGG2519uObf+0tG8bknaVdKakn0r6JdUe9u6SppTl30AV6ndJulTSc8qic4F/lnSfpIFhNQEzbX+TaijidGCTpOWSduvQxmcBW8obzEj6WWd7D9dYvTa2IWlfSf8p6edlu/9D2+N8Hhg4sHsM1VAlVNv9WQPbvWz797Ntn7u9/rcbCfpJRNKLqP65v9NeV/Zo32N7H+Ao4N2SBvZ0Btuz77bHP7tleg7VHujdVMMbu7a0awowYxjrvZPqH7F13VuBX3RZrt3dpU3t69o4jHVMk/SUtuXv7DDfe4A/AA6xvRvwR6VcALYvs30E1aeqH1PtPUIVJv/b9u4ttyfbvqos92nbLwT2B/YF/rbDY98J7CFp6gj7OdT2HulzOVavjXb/QrU955ft/n7KNi++ACySdCDV0NclpfwO4La27T7V9qtG0ZbGStBPApJ2k/Qa4Hyq8c3rO8zzGknPliSqj7OPUw0nQPUPvc8IHvoYSftL2hVYBlxo+3GqcfBdJL1a0k5U485PalnuF8A8SYO9fs4D3iVpb0lPpdpLu6AMbdRW2vLvwN9LmlqGQ95N9c8/HB+WtLOklwGvoRp/bzeV6uDufZL2AE4dqJC0p6RF5Q3jEaoDjQPb/gzgJEnPLfM+TdL/KtMvknRI2Ya/ojqo+gRtbN8BXAV8RNIukp5PdRC2bj+H2t4jfS7H6rXRbirV8Y8Hy6ekt7ZW2u4H1lLtyV/UMgRzNfCApPdJerKkKZIOKDtL0SZBP7H+Q9IDVHsnJ1MdNPyLQeadD3ydKmS+C3zW9rdK3UeAD5SPsO8dxuOfS3VA8udUBwHfCWD7fuBtVOPEG6lCqvWLRwNBeY+k73dY74qy7iupzob4NfCOYbSr1TvK42+g+qTzxbL+un5OdTbMncC/AW+x/eMO8/0T1cHhu4E1wNda6nageoO5k2po5lBKINm+GPgYcH4ZevgRMPCdgt2o9vzvpRr+uIdqCK6To6kORt4JXAyc6iG+F9Fm0O09iudyrF4b7d4L/DnV2Uz/ClzQYZ7PA8/jt8M2AzsBr6E6cH0b1fN2FtVZWtFm4KyNiAig+tY01SfLsya6LQCS/ojq083cGicgRAfZo4+ISasMD/01cFZCfuQS9BExKUnaj+qLVHtRDa3FCGXoJiKi4bJHHxHRcJPyh36mT5/uefPmTXQzIiJ+b1xzzTV3257RqW5SBv28efNYt27dRDcjIuL3hqSfDlaXoZuIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMN1DXpJsyV9S9KNkm6Q9Ncd5pGkT0taL+k6SS9oqVsi6dZyW9LrDkRExNDqnEe/FXiP7e+XCyNcI2m17Rtb5nkl1c/ozgcOobqYwCEtv+vdR3URgGskrbR9b097ERERg+q6R1+uj/n9Mv0A1cV72y9xtgg4x5U1VJdg24vq4sirbW8p4b6a6krxERExTob1zVhJ84CDge+1Vc1k2+sz9peywco7rXspsBRgzpw5w2nWpDDvxEsn7LFv/+irJ+yxJ8pEbe9s6/GzPW7rsVL7YGy5RNlFwN/Y/mWvG2J7ue0+230zZnT8uYaIiBiBWkFffvz/IuDfbH+5wywb2fZiwrNK2WDlERExTuqcdSPgc8BNtj85yGwrgTeXs29eDNxv+y7gMuBISdMkTQOOLGURETFO6ozRvwR4E3C9pGtL2fuBOQC2zwBWAa8C1gMPUS5wbXuLpNOoruIOsMz2lt41PyIiuuka9La/A6jLPAbePkjdCqqr1EdExATIN2MjIhouQR8R0XAJ+oiIhkvQR0Q0XII+IqLhEvQREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMN1vfCIpBXAa4BNtg/oUP+3wBtb1rcfMKNcXep24AHgcWCr7b5eNTwiIuqps0d/NrBwsErbH7d9kO2DgJOA/2q7XODLS31CPiJiAnQNettXAnWv83o0cN6oWhQRET3VszF6SbtS7flf1FJs4HJJ10ha2qvHioiI+rqO0Q/DnwL/3TZs81LbGyU9A1gt6cflE8LvKG8ESwHmzJnTw2ZFRGzfennWzWLahm1sbyx/NwEXAwsGW9j2ctt9tvtmzJjRw2ZFRGzfehL0kp4GHAp8paXsKZKmDkwDRwI/6sXjRUREfXVOrzwPOAyYLqkfOBXYCcD2GWW2/wlcbvtXLYvuCVwsaeBxvmj7a71rekRE1NE16G0fXWOes6lOw2wt2wAcONKGRUREb+SbsRERDZegj4houAR9RETDJegjIhouQR8R0XAJ+oiIhkvQR0Q0XII+IqLhEvQREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFyCPiKi4RL0EREN1zXoJa2QtElSx+u9SjpM0v2Sri23U1rqFkq6WdJ6SSf2suEREVFPnT36s4GFXeb5tu2Dym0ZgKQpwOnAK4H9gaMl7T+axkZExPB1DXrbVwJbRrDuBcB62xtsPwqcDywawXoiImIUejVG/4eSfijpq5KeW8pmAne0zNNfyjqStFTSOknrNm/e3KNmRUREL4L++8Bc2wcC/xe4ZCQrsb3cdp/tvhkzZvSgWRERAT0Ietu/tP1gmV4F7CRpOrARmN0y66xSFhER42jUQS/pmZJUpheUdd4DrAXmS9pb0s7AYmDlaB8vIiKGZ8duM0g6DzgMmC6pHzgV2AnA9hnAnwFvlbQVeBhYbNvAVkknAJcBU4AVtm8Yk15ERMSguga97aO71H8G+MwgdauAVSNrWkRE9EK+GRsR0XAJ+oiIhkvQR0Q0XII+IqLhEvQREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMMl6CMiGi5BHxHRcF2DXtIKSZsk/WiQ+jdKuk7S9ZKuknRgS93tpfxaSet62fCIiKinzh792cDCIepvAw61/TzgNGB5W/3LbR9ku29kTYyIiNGoc83YKyXNG6L+qpa7a4BZo29WRET0Sq/H6I8Dvtpy38Dlkq6RtHSoBSUtlbRO0rrNmzf3uFkREduvrnv0dUl6OVXQv7Sl+KW2N0p6BrBa0o9tX9lpedvLKcM+fX197lW7IiK2dz3Zo5f0fOAsYJHtewbKbW8sfzcBFwMLevF4ERFR36iDXtIc4MvAm2zf0lL+FElTB6aBI4GOZ+5ERMTY6Tp0I+k84DBguqR+4FRgJwDbZwCnAE8HPisJYGs5w2ZP4OJStiPwRdtfG4M+RETEEOqcdXN0l/rjgeM7lG8ADvzdJSIiYjzlm7EREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMMl6CMiGi5BHxHRcAn6iIiGS9BHRDRcgj4iouES9BERDVcr6CWtkLRJUsdrvqryaUnrJV0n6QUtdUsk3VpuS3rV8IiIqKfuHv3ZwMIh6l8JzC+3pcC/AEjag+oas4cAC4BTJU0baWMjImL4agW97SuBLUPMsgg4x5U1wO6S9gJeAay2vcX2vcBqhn7DiIiIHut6cfCaZgJ3tNzvL2WDlf8OSUupPg0wZ86cETdk3omXjnjZiMlqe3xdb499vv2jrx6T9U6ag7G2l9vus903Y8aMiW5ORERj9CroNwKzW+7PKmWDlUdExDjpVdCvBN5czr55MXC/7buAy4AjJU0rB2GPLGURETFOao3RSzoPOAyYLqmf6kyanQBsnwGsAl4FrAceAv6i1G2RdBqwtqxqme2hDupGRESP1Qp620d3qTfw9kHqVgArht+0iIjohUlzMDYiIsZGgj4iouES9BERDZegj4houAR9RETDJegjIhouQR8R0XAJ+oiIhkvQR0Q0XII+IqLhEvQREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFytoJe0UNLNktZLOrFD/ackXVtut0i6r6Xu8Za6lb1sfEREdNf1UoKSpgCnA0cA/cBaSStt3zgwj+13tcz/DuDgllU8bPug3jU5IiKGo84e/QJgve0Nth8FzgcWDTH/0cB5vWhcRESMXp2gnwnc0XK/v5T9Dklzgb2Bb7YU7yJpnaQ1kl472INIWlrmW7d58+YazYqIiDp6fTB2MXCh7cdbyuba7gP+HPgnSf+j04K2l9vus903Y8aMHjcrImL7VSfoNwKzW+7PKmWdLKZt2Mb2xvJ3A3AF247fR0TEGKsT9GuB+ZL2lrQzVZj/ztkzkp4DTAO+21I2TdKTyvR04CXAje3LRkTE2Ol61o3trZJOAC4DpgArbN8gaRmwzvZA6C8GzrftlsX3A86U9ATVm8pHW8/WiYiIsdc16AFsrwJWtZWd0nb/Qx2Wuwp43ijaFxERo5RvxkZENFyCPiKi4RL0ERENl6CPiGi4BH1ERMMl6CMiGi5BHxHRcAn6iIiGS9BHRDRcgj4iouES9BERDZegj4houAR9RETDJegjIhouQR8R0XAJ+oiIhkvQR0Q0XK2gl7RQ0s2S1ks6sUP9sZI2S7q23I5vqVsi6dZyW9LLxkdERHddLyUoaQpwOnAE0A+slbSyw7VfL7B9QtuyewCnAn2AgWvKsvf2pPUREdFVnT36BcB62xtsPwqcDyyquf5XAKttbynhvhpYOLKmRkTESNQJ+pnAHS33+0tZu9dJuk7ShZJmD3NZJC2VtE7Sus2bN9doVkRE1NGrg7H/Acyz/XyqvfbPD3cFtpfb7rPdN2PGjB41KyIi6gT9RmB2y/1Zpew3bN9j+5Fy9yzghXWXjYiIsVUn6NcC8yXtLWlnYDGwsnUGSXu13D0KuKlMXwYcKWmapGnAkaUsIiLGSdezbmxvlXQCVUBPAVbYvkHSMmCd7ZXAOyUdBWwFtgDHlmW3SDqN6s0CYJntLWPQj4iIGETXoAewvQpY1VZ2Ssv0ScBJgyy7AlgxijZGRMQo5JuxERENl6CPiGi4BH1ERMMl6CMiGi5BHxHRcAn6iIiGS9BHRDRcgj4iouES9BERDZegj4houAR9RETDJegjIhouQR8R0XAJ+oiIhkvQR0Q0XII+IqLhEvQREQ1XK+glLZR0s6T1kk7sUP9uSTdKuk7SNyTNbal7XNK15bayfdmIiBhbXS8lKGkKcDpwBNAPrJW00vaNLbP9AOiz/ZCktwL/CLyh1D1s+6AetzsiImqqs0e/AFhve4PtR4HzgUWtM9j+lu2Hyt01wKzeNjMiIkaqTtDPBO5oud9fygZzHPDVlvu7SFonaY2k1w62kKSlZb51mzdvrtGsiIioo+vQzXBIOgboAw5tKZ5re6OkfYBvSrre9k/al7W9HFgO0NfX5162KyJie1Znj34jMLvl/qxStg1JhwMnA0fZfmSg3PbG8ncDcAVw8CjaGxERw1Qn6NcC8yXtLWlnYDGwzdkzkg4GzqQK+U0t5dMkPalMTwdeArQexI2IiDHWdejG9lZJJwCXAVOAFbZvkLQMWGd7JfBx4KnAlyQB/Mz2UcB+wJmSnqB6U/lo29k6ERExxmqN0dteBaxqKzulZfrwQZa7CnjeaBoYERGjk2/GRkQ0XII+IqLhEvQREQ2XoI+IaLgEfUREwyXoIyIaLkEfEdFwCfqIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMMl6CMiGi5BHxHRcAn6iIiGS9BHRDRcraCXtFDSzZLWSzqxQ/2TJF1Q6r8naV5L3Uml/GZJr+hd0yMioo6uQS9pCnA68Epgf+BoSfu3zXYccK/tZwOfAj5Wlt2f6mLizwUWAp8t64uIiHFSZ49+AbDe9gbbjwLnA4va5lkEfL5MXwj8iaqrhC8Czrf9iO3bgPVlfRERMU7qXBx8JnBHy/1+4JDB5rG9VdL9wNNL+Zq2ZWd2ehBJS4Gl5e6Dkm6u0bZemA7cPU6PNSb0MaAB/eD3oA9lW3cz6ftRQ/owAQZ5fdXtx9zBKuoE/biwvRxYPt6PK2md7b7xftxea0I/mtAHaEY/0ofJoxf9qDN0sxGY3XJ/VinrOI+kHYGnAffUXDYiIsZQnaBfC8yXtLeknakOrq5sm2clsKRM/xnwTdsu5YvLWTl7A/OBq3vT9IiIqKPr0E0Zcz8BuAyYAqywfYOkZcA62yuBzwHnSloPbKF6M6DM9+/AjcBW4O22Hx+jvozUuA8XjZEm9KMJfYBm9CN9mDxG3Q9VO94REdFU+WZsRETDJegjIhpuuwt6SXtIWi3p1vJ32iDzzZF0uaSbJN3Y+rMOk0HdfpR5d5PUL+kz49nGbur0QdJBkr4r6QZJ10l6w0S0td1ofhZkMqnRj3eX1/91kr4hadBztSdKtz60zPc6SZY0KU+5rNMPSa8vz8cNkr5Ye+W2t6sb8I/AiWX6ROBjg8x3BXBEmX4qsOtEt30k/Sj1/wx8EfjMRLd7uH0A9gXml+lnAXcBu09wu6cAPwH2AXYGfgjs3zbP24AzyvRi4IKJ3t4j7MfLB177wFsnWz/q9KHMNxW4kuoLnH0T3e4RPhfzgR8A08r9Z9Rd/3a3R8+2P9fweeC17TOU3+jZ0fZqANsP2n5o/JpYS9d+AEh6IbAncPk4tWs4uvbB9i22by3TdwKbgBnj1sLORvOzIJNJ137Y/lbLa38N1XdhJpM6zwXAaVS/wfXr8WzcMNTpx18Bp9u+F8D2pror3x6Dfk/bd5Xpn1OFYLt9gfskfVnSDyR9fBL+GFvXfkjaAfgE8N7xbNgw1HkufkPSAqq9nZ+MdcO66PSzIO0/7bHNz4IAAz8LMpnU6Uer44CvjmmLhq9rHyS9AJht+9LxbNgw1Xku9gX2lfTfktZIWlh35ZPmJxB6SdLXgWd2qDq59Y5tS+p0fumOwMuAg4GfARcAx1J9X2Dc9KAfbwNW2e6fqJ3JHvRhYD17AecCS2w/0dtWRjeSjgH6gEMnui3DUXZ2Pkn1//v7bkeq4ZvDqD5ZXSnpebbvq7Ng49g+fLA6Sb+QtJftu0p4dPr40w9ca3tDWeYS4MWMc9D3oB9/CLxM0tuojjPsLOlB24MesOq1HvQBSbsBlwIn217TaZ5xNpyfBelv+1mQyaTWT5RIOpzqjflQ24+MU9vq6taHqcABwBVlZ+eZwEpJR9leN26t7K7Oc9EPfM/2Y8Btkm6hCv613Va+PQ7dtP5cwxLgKx3mWQvsLmlgLPiPqb7dO5l07YftN9qeY3se1fDNOeMZ8jV07UP52Y2Lqdp+4Ti2bSij+VmQyaRrPyQdDJwJHDWcMeFxNGQfbN9ve7rteeX/YA1VXyZTyEO919QlVHvzSJpONZSzodbaJ/po83jfqMZJvwHcCnwd2KOU9wFntcx3BHAdcD1wNrDzRLd9JP1omf9YJt9ZN137ABwDPAZc23I7aBK0/VXALVTHC04uZcuoQgRgF+BLVNdguBrYZ6LbPMJ+fB34Rcu2XznRbR5uH9rmvYJJeNZNzedCVMNQN5ZcWlx33fkJhIiIhtseh24iIrYrCfqIiIZL0EdENFyCPiKi4RL0ERENl6CPiGi4BH1ERMP9f1xsnH+dZBoUAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "SkRVIA97M0iN",
|
||
"outputId": "6573270f-0923-4a38-eb1f-7b03225dddc1",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 337
|
||
}
|
||
},
|
||
"source": [
|
||
"epochs = np.arange(30)+1\n",
|
||
"import matplotlib.ticker as mtick\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import matplotlib.ticker as mticker\n",
|
||
"%matplotlib inline\n",
|
||
"plt.subplot(211)\n",
|
||
"plt.plot(epochs, train_losses, 'bo', label='Training loss')\n",
|
||
"plt.plot(epochs, val_losses, 'r', label='Validation loss')\n",
|
||
"#plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))\n",
|
||
"plt.title('Training and validation loss without dropout')\n",
|
||
"plt.xlabel('Epochs')\n",
|
||
"plt.ylabel('Loss')\n",
|
||
"plt.legend()\n",
|
||
"plt.grid('off')\n",
|
||
"plt.show()\n",
|
||
"plt.subplot(212)\n",
|
||
"plt.plot(epochs, train_accuracies, 'bo', label='Training accuracy')\n",
|
||
"plt.plot(epochs, val_accuracies, 'r', label='Validation accuracy')\n",
|
||
"#plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))\n",
|
||
"plt.title('Training and validation accuracy without dropout')\n",
|
||
"plt.xlabel('Epochs')\n",
|
||
"plt.ylabel('Accuracy')\n",
|
||
"#plt.ylim(0.8,1)\n",
|
||
"plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) for x in plt.gca().get_yticks()]) \n",
|
||
"plt.legend()\n",
|
||
"plt.grid('off')\n",
|
||
"plt.show()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACgCAYAAAAB6WsAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZwUxfXAv0+uBRaQQ4hyYxTDtbvcBAFBjCgIiiggURAvSEAjHqAoEBV/GgkxeEUFvCCi8SAYPLkhHuEQUQ4VERRB7mMRFtjl/f6o3t1hd2Z3ZneG2Zl538+nPzNdU139Xvd0vapXVa9FVTEMwzASl9OiLYBhGIYRXcwQGIZhJDhmCAzDMBIcMwSGYRgJjhkCwzCMBMcMgWEYRoJjhqCEICLvicjgcOeNJiKyWUS6R6BcFZFfe9//ISL3B5O3COcZJCIfFlXOAsq9QES2hrvc4iAi9UTkkIiUKiBPka9luBGRF0XkoWjLES+UjrYAsYyIHPLZrQAcBbK8/VtUdWawZanqJZHIG++o6rBwlCMiDYDvgTKqmumVPRMI+h7GMqr6A5CcvS8ii4AZqjo10ucWkQnAr1X195E+V6Q5ldctnJghKAaq6vvgbAZuVNV5efOJSOnsysUwjMhiz1vomGsoAmR3/UVktIj8DLwgIlVF5D8isktE9nnf6/gcs0hEbvS+DxGRZSIyycv7vYhcUsS8DUVkiYiki8g8EXlKRGYEkDsYGR8Ukf965X0oIjV8fr9WRLaIyB4RGVvA9WknIj/7uiFE5AoRWeN9bysin4jIfhHZLiJPikjZAGWd5CIQkbu8Y7aJyNA8eXuKyOciclBEfvRaotks8T73ey6SDtnX1uf434rIchE54H3+NthrUxAi8hvv+P0islZEevv8dqmIrPPK/ElE7vTSa3j3Z7+I7BWRpSKS73kWkT+LyBPe9zIi8ouIPObtlxeRDBGpJiINPNdPaRGZCHQCnvSuxZM+RXYXkW+98z4lIuKVdZqI3Ofd/50i8rKIVPF+y+cKE89tKCI9gHuB/t65vghwjdJEZJV3HV4Dknx+8/e8lRORx73/wTbve7k8+e8Vkd2eLIN8yqviyb/L0+e+7GsrIhPE5/kJ4bqVaMwQRI5fAdWA+sDNuGv9grdfDzgCFPRHaQd8DdQA/gJMy37oQsz7T+B/QHVgAnBtAecMRsZrgOuBmkBZILtiagI845V/lne+OvhBVT8DfgG65Sn3n973LOB2T58OwIXAHwqQG0+GHp48FwHnAHnHJ34BrgNOB3oCw0Xkcu+3zt7n6aqarKqf5Cm7GjAXmOLpNhmYKyLV8+iQ79oUInMZ4B3gQ++4kcBMEWnsZZmGczNWApoBC7z0O4CtwBlALVxl6i9ezGLgAu97G+BnH107AF+r6l7fA1R1LLAUGOFdixE+P/fyymkBXA1c7KUP8bauQCOcm6nQilBV3wceBl7zzpWSN4/XCJgNvIJ7pv4FXJknW97nbSzQHkgFUoC2wH158tcAagODged8rvkTQBVPjy64/8z1QehS0HUr0ZghiBwngPGqelRVj6jqHlV9U1UPq2o6MBH3JwvEFlV9XlWzgJeAM3EPfNB5RaQe7qEdp6rHVHUZMCfQCYOU8QVV/UZVjwCv4x40gH7Af1R1iaoeBe73rkEgXgUGAohIJeBSLw1VXamqn6pqpqpuBp71I4c/rvbk+0pVf8EZPl/9Fqnql6p6QlXXeOcLplxwhuNbVX3Fk+tVYANwmU+eQNemINrjKs1HvHu0APgP3rUBjgNNRKSyqu5T1VU+6WcC9VX1uKouVf+Bwz4BzvEMVmecYaktIsme7ouD1D+bR1R1vzemsNBHx0HAZFXdpKqHgHuAASISDvdze6AM8Lin6xvA8jx5TnrePHkeUNWdqroL+DP5G0H3e/kX44z81eJ6qQOAe1Q13fv//dXPsXGFGYLIsUtVM7J3RKSCiDzrdTUP4lwRp0vgWRo/Z39R1cPe1+QQ854F7PVJA/gxkMBByvizz/fDPjKd5Vu2VxHvCXQuXOu/r9dd7wusUtUtnhznem6Pnz05Hsa13grjJBmALXn0ayciC70u/wFgWJDlZpe9JU/aFlyLMptA16ZQmVXV12j6lnslzkhuEZHFItLBS38M2Ah8KCKbRGSMv8K9SnEFrtLvjKv4PwY6UjRDUND9970+W3BjkIEaL6FwFvBTHkOX916c9LwFkOcsn/193n807+81cEYn77G+9znuMEMQOfK2zu4AGgPtVLUyud3zQO6ecLAdqCYiFXzS6haQvzgybvct2ztn9UCZVXUd7gG7hJPdQuBcTBuAczw57i2KDDj3li//xPWI6qpqFeAfPuUWFoZ3G87t4Es94Kcg5Cqs3Lp5/Ps55arqclXtg3Mbzcb1NPBaq3eoaiOgNzBKRC4McI7FODdcGq4lvRjn0mlL7thIXkINS5z3+tQDMoEdOJdczn/Qa1icEcK5tuN6Mb7/gbz3Nm8Z/uTZ5rNfVUQq+vl9N663lffY7Pt8ki44F1NBcsQEZghOHZVwPvf9nr95fKRP6LWwVwATRKSs15q8rIBDiiPjG0AvETnf8+k+QOH/r38Ct+EMzr/yyHEQOCQi5wHDg5ThdWCIiDTxDFFe+SvhekgZItIWZ4Cy2YVzLzQKUPa7wLkico03MNgfaIJz4xSHz3At67vFDeZegLtHs7x7NkhEqqjqcdw1OQEgIr1E5Nde5XgAN64SyBW3GOfnXqeqx4BFwI3A957bxB87CHwt/PEqcLu4yQnJ5Pr9M4FvgCRxg/VlcL76cnnO1UD8DHZ7fIIzKrd616gvzogVJs99InKGuEH7cUDeSRJ/9q5xJ9zYx7889+rrwEQRqSQi9YFRPseuBjqLW3dRBecC8yXU61YiMENw6ngcKI9rcXwKvH+KzjsINyi4B3gIeA233sEfRZZRVdcCf8RV7tuBfbjBzILI9tEvUNXdPul34irpdOB5T+ZgZHjP02EBzm2yIE+WPwAPiEg6rmJ43efYw7gxkf+KmxHTPk/Ze3CVxR24a3k30CuP3CHjVcyX4XpGu4GngetUdYOX5Vpgs+ciG4a7n+AGw+cBh3AV5dOqujDAaT7G3dfs1v86IIPAvQGAvwP9xM0emxKEKtNxg7lLcOsxMnAD36jqAdy1n4prWf/Cyf+N7EbAHhFZRR68a9QXNxi9F+gPvFWIPA/hGkFrgC+BVV5aNj/j/qPbcGtFhvlc85GejJuAZbj/9HRPlo9w/8c1wEryNwRCvW4lAvE/vmTEK+Km3m1Q1Yj3SAyjJOL1umaoqt9ZbYmI9QjiHBFpIyJni5vn3QPog/M1G4ZhALayOBH4Fa4bXR3XHR+uqp9HVyTDMEoS5hoyDMNIcMw1ZBiGkeCYITAMw0hwYm6MoEaNGtqgQYOT0n755RcqVqzo/4AYJN70gfjTKd70gfjTKd70geLptHLlyt2qeobfH1U1prZWrVppXhYuXJgvzZcZM1Tr11cVcZ8zZhSYPeoUpk8sEm86xZs+qvGnU7zpo1o8nYAVGqBejbkeQajMnAk33wyHvWg7W7a4fYBBgwIfZxiGkSjE/RjB2LG5RiCbw4ddumEYhpEAhuCHH0JLNwzDSDTi3hDUyxujsJB0wzCMRCPuDcHEiVChwslpFSq4dMMwDCMBDMGgQfDcc1C/Poi4z+ees4FiwzCMbOJ+1hC4St8qfsMwYpqtWymVd+ZLmIj7HoFhGEbMcvAgvPACdOsG9epRc968iJwmIXoEhmEYMcPx4/Dhh/DKK/Dvf0NGBvz61zB+PPsaN47IKROnR/D553DrrWDRVg3DKGmowv/+5+qo2rWhVy+YNw9uuAE++QS++QbGjyfjV3lfkRweEqdH8Mkn8MQT0KQJDBsWbWkMwzBgxw43e2XGDFfZlysHffrA738PF18MZcueEjESxxAMHw6zZ8Mdd0D37q6rZRiGES3eeANuuQX27oULLoDRo+HKK6FKlVMuSuK4hkRg+nRnYa+7DrKyoi2RYRiJyP79cO21cNVVcPbZsG4dLFwIQ4dGxQhAIhkCgDp14KmnnJvosceiLY1hGInGggXQogW8+ipMmAD//S/85jfRlirBDAHAwIHQrx+MGwdr1kRbGsMwEoGMDBg1Ci68EMqXd43R8eOhTJloSwYkoiEQgWeegWrVXPfs6NFoS2QYRjjJzISxY0kbMcI1+JYvhxMnoifP559Dq1bwt7/BiBFuv02b6Mnjh8QZLPalRg2YOhUuu8x1z/7v/6ItkWEY4WD7dhgwAJYsoXSDBi6o2IMPwq9+BT17ume+e3cI9i1fhw7BF1+4yvvzz51/v3Fj5875zW/gvPMgOdn/sZmZ8Je/uJb/GWfA+++7mUAlkIgaAhHpAfwdKAVMVdVHAuS7EngDaKOqKyIpUw69esGNN7ob1asXdOx4Sk5rGEaEWLIE+veHAwfg5ZdZXrcuFzRrBu+9B++8A6+/DtOmuSmaF17onvtevaBuXXf8zp25FX72tnFj7tqjGjWcJ2HOHFfJZ1O3bq5hyN4qVXKt/48/hquvzvVClFAiZghEpBTwFHARsBVYLiJzVHVdnnyVgNuAzyIlS0AmT3aLNgYPhtWrA1t2w4hnjh+HJ54guXJlN40x1lB1z/Lo0dCokVuV27w5LFrkKu9rr3XbsWOwdKkzCu+8A+++C3/4AzRtCvv2wbZtuWU2aABpaW4+f1qa22rXdq7lY8fgu+9g/Xq3rVvnPpcuhSNHcsuoUsW9InHgQHdcCSaSPYK2wEZV3QQgIrOAPsC6PPkeBB4F7oqgLP6pVAleesn9+e+6y1ltw0gkMjJci/Wdd2hZpoyryEaMKPEVVw4HD8L118Nbb8EVV7i4PIGmYJYt63oCF17o/PUbNjiDMH9+bmWflgapqVC1auBzli2b2/L35cQJ98ar9evdO3F79XIzFWOASBqC2sCPPvtbgXa+GUSkJVBXVeeKyKk3BACdO7tFZpMmweWXl1gfnmGEnUOH3H9+/nx49FH2vf021W+91fWSp0+H6tWjLWHBfPUV9O0Lmza56eB33BG8ARPJrczvvjs88px2mutJNGgQnvJOIaIRir0jIv2AHqp6o7d/LdBOVUd4+6cBC4AhqrpZRBYBd/obIxCRm4GbAWrVqtVq1qxZJ/1+6NAhkovh1jnt2DFa3XILpQ8dYvm0aWRWrlzkssJBcfUpicSbTrGuT+lDh2g+ZgyV169nw913s+PiizmUns55H3xAo2ef5VjVqqy/7z4OtGgRbVH9UvOjj2g8eTKZFSqwbtw4DqSk5MsT6/fIH8XRqWvXritVtbXfH1U1IhvQAfjAZ/8e4B6f/SrAbmCzt2UA24DWBZXbqlUrzcvChQvzpYXMqlWqpUurDhxY/LKKSVj0KWHEm04xrc+OHaqpqaplyqi+8UZOco5OK1aonn226mmnqT7wgGpmZnTk9EdGhurw4aqg2qmT6rZtAbPG9D0KQHF0AlZogHo1kq6h5cA5ItIQ+AkYAFzjY4AOADWy9wvqEZwS0tLcNK/773dBn/r3j4oYhhFRtm510yd/+MH5x/25Qlu1glWrXHyucePcatiZM+Gss4I/z44dLprmsWNulk5SkvsM9F3VDdhmb3v3+v++di18/TXceSc8/HCJWZAV60TMEKhqpoiMAD7ATR+drqprReQBnGWaE6lzF5kxY9zD8Yc/QKdOof3xDaOk8913zgjs2QMffOD+44GoXNlFxLzoIvjjHyElxU2suPTS/HlVnZ9+6VK3LVvmImmGi6QkN3hbtSrUquUMQN++4SvfiOw6AlV9F3g3T9q4AHkviKQsQVG6NLz8susdtGwJf/0rXHNN7MygMIxArFvnjMDRo66F39q/q/gkRGDIEGjf3vWQe/Z0YRIeesi1yn0r/u3b3TFVq8L557s1Oh07upl5GRnuvEeP5n7PmyaSW9nn3cqXj+ilMRJ1ZXFBNG7s/tjDhrk5xFOnwtNPl4jAUEacogr33usaIU2auEZIy5bORdOokZuNUhxWrnQuoDJlYPFiaNYstOPPOw8++8y5YyZPhilTchdU1a0LXbu63kWnTu45Ka68xinHDIE/WrZ0QaGmTnXuohYt3NS0++8Pfmm6YQTDiRMwcqRrbHTv7vzhf/ubW+QFzkWT3UPN3ho3hlKlgit/2TLXkq9a1U0LLep7OJKS4MknnUGZNw/atnUt//r1i1aeUaIwQ5CHmTNh7Fj44YdS1Kt3C5MmXkG/5aPh0Udd6Ni//90NJofiLlJ1g3NnnnnK3jhkxAAnTrie5/PPu7nsjzySu3J17Vo3YJu9/eMfuatWy5d3FXv2gGv2VrZs/v05c1yrfd683FAKxeGyy9xmxBVmCHyYORNuvhkOH3b7W7bA4LtqcvS5Fxh0ww1uFsUVV7gW1pQprtvuj4MH3YyJTz91PYvPPnMDdPXqwQMPOJdTsC06Iz7JyoKbbnIrYceOdYHRshsXZcvmrnK94QaXlpnp/PKrVrlwKAcO5PrYjx3L/X7kiAuMlr1//vlu0LdmzejpapR4zBD4MHZsrhHI5vBhlz5o8/nuIXziCTfNtGlT98Mdd7gZE59+mlvxr1uXG6iqSRPXg2jRwj2QQ4a4QHcPPwy9e9tAdCKSmenCIsyY4aLfjhtX+P+gdGn3n2va1MXNMYwwYobAhx9+KCS9TBk3a+Lqq93n/fe7Bzn7tZdVq7oZFldf7T7btoXTT88t6NZbXUyUsWPd0v727V0I7JIU6OvgQRd8zwb8IkNmpqvIZ81yIZLvvTfaEgXF8ePH2bp1KxkZGdEWJWiqVKnC+vXroy1GWAlGp6SkJOrUqUOZENZYmCHwoV495w7yl34Sdeq4kLYffuhijKekuEr9nHMKrkBF3Mup+/Rxc7InTHAzLi6+2PUQWrYMpzqhceKE6+2MGeN6MU8/De3aFX5cNNixw8mZmelmqTRp4j7PPtu1nEsqx4+7SJRvvul6hXdFJ7xWUdi6dSuVKlWiQYMGSIz0YtPT06lUqVK0xQgrhemkquzZs4etW7fSsGHDoMstwU/NqWfixJPHCAAqVHDpfvnd79wWKqVLO9/vNde4Cvfhh91Uwf79na/4VLNli3NVLFwI3bq5qIwdOri54P/3fyUr+Nj//ucWE+3Z40IMz5iR+1vZss4YZxuG7M/Gjd3gaXE5ccK5/2bPpsmKFfDtt26BVe3ahR979Ki7v//+t5uCefvtxZfnFJKRkRFTRiBRERGqV6/Orl27QjswUOyJkrpFLNaQx4wZqvXrq4q4zxkzwlZ0YPbvV73vPtUKFVRLldKfL7xQ9bHHVN9+W3XNGtVffonMeU+cUJ02TbVSJdXkZNXnn3dpBw+qjhqlWqqUavXqqlOnqmZlhV7+zp2qf/2r6m9/q1v691dNTy+evFOnqpYt627MqlUu7cAB1c8+U33xRdW771a97DIXJ0fExaMBd0znzqrjxqkuXKh65Ejw5zx6VPX991VvuUX1V79y5ZUurRnVq+eWn5Kieu+9qsuWqR4/nr+MI0dUe/Z0eZ98snjXIIIU9BytW7fu1AkSJg4ePBhtEcJOsDr5u18UEGso6hV7qFukDUFU+fln1REj9FjlyrmVTPZ21lmuMhs6VHXiRNXXXlNdudJVVEVh+3bVXr1c2V26qH7/ff48a9aonn++y9Ohg+rnnxdeblaW6ocfql51lQtqBqpNm7rPOnVU33rLGZtQOHpUddgwV0b37qq7dhV+zOHDqqtXq776quodd6i2bu2CqIFquXJO5wkTVBctym8Y0tNV//Uv1WuuUa1SxR1TsaJqv36qM2eq7tunCxcsUP3yS9VHH3VllSrl8lWt6gIXvvKKM4SHD6tefLH77dlnQ9P7FFOSDcHu3bs1JSVFU1JStFatWnrWWWfl7B8N8AxkV5rLly/XkSNHFnqODh06hEXWhQsXas+ePcNSVl7MECSCIfBYuHCh6t69qsuXu4rswQdVBw92lXJ2qzR7q1xZtX9/V0Ht3RvcCV5/3bX0k5JU//a3glv7J0641vYZZ7iKdORI14PJy48/ukiVDRo4uapXV739dtWvvlJV1ZVPPKHavLn7rVcv/4bHHz/9pPrb37rj7r7bf4s7WPbtU33nHWcYWrXK7TUkJal27ao6dqxq795uP1uH669XnTPHVeg+5PvP7dvnruvgwao1a7rjRVTPPNN9TptWdLlPEeE0BJHsWY8fP14fe+yxk9KO+/lfRKtHYIbADEFYKFSf9HTX2p01S/WGG3IrnlKlVC+4QHXyZNVvv81/3J49rrUKqm3aqK5fH7xQe/e68L8iqrVquSf72DHnvurZM7e13b27kysjI79Ox46pTprkWtfly6s+8ohLC8SyZc7wVajgekDhZt8+V8mPGqXasqXTrW5d1VtvdS6kAoxOgfcoK8sZ8T//WfV3v3PGPAYIlyGYMcPdMt/2SoUK4TMG2YZg8ODBesstt2jbtm319ttv188++0zbt2+vqamp2qFDB125cqWqnlwxjx8/Xq+//nrt0qWLNmzYUP/+97/nlFuxYsWc/F26dNErr7xSGzdurNdcc42e8Hqxc+fO1caNG2vLli115MiRfit83/Pt2bNH+/Tpo82bN9d27drpF198oaqqixYtyunRpKam6sGDB3Xbtm3aqVMnTUlJ0aZNm+qSJUvylW2GoIQZgki2eELWJytL9ZNPnJ+6WbPcp+83v1EdPVr1v/9VnTvXtU5Ll3Yt96K2rJcvd0Yk++nOdluNHav63XfB6bRli+rll2uO2yjvH/7ECdWnn3aupbPPdi6qU8EvvwTttoq3xodq+AxB/fonG4HsrX79Youoqicbgp49e2qm976EAwcO5PQMPvroI+3du7eq5jcEHTp00IyMDN21a5dWq1ZNj3mNEV9DULlyZf3xxx81KytL27dvr0uXLtUjR45onTp1dNOmTaqqOmDAgEINwYgRI3TChAmqqjp//nxNSUlRVdVevXrpsmXLVFU1PT1djx8/rpMmTdKHHnpIVVUzMzP9VvqRMgRBzRoSkYrAEVU9ISLnAucB76nq8dCGpuMDfyuQb77ZfR80KAoCnXaam77avr2b4rRpkwunPWeOi6D66KMuX9Om8J//FG+aauvWbtHctGnw8cfQrx/06BHatM169eDtt518I0e614UOHerkTE52YY+nT4dLLnEXu6D3x4aTChVOzXninELX44SRq666ilLeKv0DBw4wePBgvv32W0SEo0eP+j2mZ8+elCtXjnLlylGzZk127NhBnTzvFm7btm1OWmpqKps3byY5OZlGjRrlTMscOHAgzz33XIHyLVu2jDfffBOAbt26sWfPHg4ePEjHjh0ZNWoUgwYNom/fvtSpU4c2bdowdOhQjh8/zuWXX05qamqxrk0oBLtqaAmQJCK1gQ+Ba4EXIyVUSaegFcglgkaN4Lbb3Ltod+1yMZKeegpWrAjPWoVSpZzle/FF94Luos7d793brcIePdpF3jzvPLd2Yfp0uO8+Z8xOlREwwka+dTeFpBeHij5BIO+//366du3KV199xTvvvBPQEJTzmUpcqlQpMrMjqYaYpziMGTOGqVOncuTIETp27MiGDRvo3LkzS5YsoXbt2gwZMoSXX345rOcsiGANgajqYaAv8LSqXgU0jZxYJZtT2eIpNqefDgMGuJftJCVFW5r8VKzogq19/rmb8//996638OCDFo8pRpk4MX/nqsD1OGHiwIED1PbWdLz44othL79x48Zs2rSJzZs3A/Daa68VekynTp2YOXMmAIsWLaJGjRpUrlyZ7777jubNmzN69GjatGnDhg0b2LJlC7Vq1eKmm27ixhtvZNWqVWHXIRBBGwIR6QAMAuZ6aQn7lJ7KFk/C0KwZLFkCO3e68BtGzDJoEDz3nItQLeI+n3su8m7Tu+++m3vuuYe0tLSwt+ABypcvz9NPP02PHj1o1aoVlSpVokqVKgUeM2HCBFauXEmLFi0YM2YML730EgCPP/44zZo1o0WLFpQpU4ZLLrmERYsWkZKSQlpaGq+99hq33XZb2HUISKDBA98N6ALMAUZ7+42AKUEc1wP4GtgIjPHz+zDgS2A1sAxoUliZJWGwONKzIhJtIDIWiTd9VEv2OoKiEInpo+neosgTJ07o8OHDdfLkyWE/R0FEarA4qB6Bqi5W1d6q+qiInAbsVtVbCzpGREoBTwGXAE2AgSLSJE+2f6pqc1VNBf4CTA5GnmgTrRaPYRjR5fnnnyc1NZWmTZty4MABbrnllmiLFBaCMgQi8k8RqezNHvoKWCcihUXMagtsVNVNqnoMmAX08c2gqgd9disCGrzo0WXQINi82YWf2by5YCMwcyY0aOAm9zRo4PYNw4g9br/9dlavXs26deuYOXMmFeJkppm4HkMhmURWq2qqiAwCWgJjgJWq2qKAY/oBPVT1Rm//WqCdqo7Ik++PwCigLNBNVb/1U9bNwM0AtWrVajVr1qyTfj906BDJycmF6hEN5s2ryaRJjTl6NHdIpVy5LO6882u6d9/p95iSrE9RiTed4k0fKFinKlWq8OuivuYySmRlZeVMLY0XgtVp48aNHDhw4KS0rl27rlTV1n4PCOQz0pN9+WuBMsC/gC5e2heFHNMPmOqzfy3wZAH5rwFeKkyWkjBGEApFWVxTkvUpKvGmU7zpo2pjBLFAVMcIgGeBzTj3zRIRqQ8cLPAI+AnwfUlqHS8tELOAuJsuElNTTQ3DSEiCHSyeoqq1VfVSz7hsAboWcthy4BwRaSgiZYEBuJlHOYjIOT67PYF8bqFYJ5SpptljCd26dbGxBMMwThnBDhZXEZHJIrLC2/6K6x0ERFUzgRHAB8B64HVVXSsiD4hIby/bCBFZKyKrceMEg4uuSskk2MU12WErtmwBVckJW2HGwDCga9eufPDBByelPf744wwfPjzgMZdeeikrVqzI+b5///58eSZMmMCkSZMKPPfs2bNZt25dzv64ceOYN29eKOL7ZdGiRfTq1avY5YSDYF1D04F04GpvOwi8UNhBqvquqp6rqmer6kQvbZyqzvG+36aqTVU1VVW7quraoqlRcgl2qmmJD1thGFFk4MCB5J0kMmvWLAYOHKBisNoAAA8aSURBVBjU8e+++y6n+74/PATyGoIHHniA7t27F6mskkqwhuBsVR2vbiroJlX9M25RmREEwUw1tbEEwwhMv379mDt3LseOHQNg8+bNbNu2jU6dOjF8+HBat25N06ZNGT9+vN/jGzRowO7duwGYOHEi5557Lueffz5ff/11Tp7nn3+eNm3akJKSwpVXXsnhw4f5+OOPmTNnDnfddRepqal89913DBkyhDfeeAOA+fPnk5aWRvPmzRk6dGhOfKMGDRowfvx4WrZsSfPmzdmwYUOB+u3du5fLL7+cFi1a0L59e9asWQPA4sWLSU1NJTU1lbS0NNLT09m+fTudO3cmNTWVZs2asXTp0uJdXIJ/Z/ERETlfVZcBiEhH4Eixz27kUK+ecwv5S/fHzJmut/DDDy7PxIm2oM04RfzpT7B6dXjLTE2Fxx8P+HO1atVo27Yt7733Hn369GHWrFlcffXViAgTJ06kWrVqZGVlceGFF7JmzRpatPA/s33lypXMmjWL1atXk5mZScuWLWnVqhUAffv25aabbgLgvvvuY9q0aYwcOZLevXvTq1cv+vXrd1JZGRkZDBkyhPnz53Puuedy3XXX8cwzz/CnP/0JgBo1arBq1SqefvppJk2axNSpUwPqN378eNLS0pg9ezYLFizguuuuY/Xq1UyaNImnnnqKjh07cujQIY4fP8706dO5+OKLGTt2LFlZWRzO60ooAsH2CIYBT4nIZhHZDDwJxMeSuhJCKIG6Th5PwMYTjITA1z3k6xZ6/fXXadmyJWlpaaxdu/YkN05eli5dyhVXXEGFChWoXLkyvXv3zvntq6++olOnTjRv3pyZM2eydm3Bnuqvv/6ahg0bcu655wIwePBglixZkvN73759AWjVqlVOoLpALFu2jGuvvRbwH656ypQp7N+/n9KlS9OmTRteeOEFJkyYwJdffkmlSpUKLDsYguoRqOoXQIqIVPb2D4rIn4A1xZbAAHJb866Vr9SrJwFb+QWNJ1ivwIg4BbTcI0mfPn24/fbbWbVqFYcPH6ZVq1Z8//33TJo0ieXLl1O1alWGDBlCRkZGkcofMmQIs2fPJiUlhRdffJFFixYVS97sUNbFCWM9ZswYevbsybvvvkvHjh156623csJVz507lyFDhjBq1Ciuu+66YskabI8AcAZAc8NCjCrWmY18ZI8lLFiwuMCwFaGMJ1h4CyNeSE5OpmvXrgwdOjSnN3Dw4EEqVqxIlSpV2LFjB++9916BZXTu3JnZs2dz5MgR0tPTeeedd3J+S09P58wzz+T48eM5oaMBKlWqRHp6er6yGjduzObNm9m4cSMAr7zyCl26dCmSbsGGq/7mm28iEq66iG8UAUCKfXajSAQ7nlDi3qRmGMVk4MCBXHHFFTkuouywzeeddx5169alY8eOBR7fsmVL+vfvT0pKCjVr1qRNmzY5vz344IO0a9eOM844g3bt2uVU/gMGDOCmm25iypQpOYPEAElJSbzwwgtcddVVZGZm0qZNG4YNG1YkvSZMmMDQoUNp0aIFFSpUOClc9cKFCznttNNo2rQpF110EXPnzuWxxx6jTJkyJCcnh+cFNoGWHBe2AT8U9djibLEWYqIoFKZPsGGwI/3u2FBItHsUi1iIiZJPVEJMiEi6iBz0s6UDZxXfDBlFIdi1CaFOSTU3kmEkJgW6hlS1+MPRRkQYNKhw904oU1LNjWQYiUtIg8VGbBHKlNRQVjZbz8Ew4gszBHFMKG9SC9aNZGsYEhcN4t0lRvQpyn0yQxDnBPsmtWCjpFpMpMQkKSmJPXv2mDEo4agqe/bsISkpKaTjijN91IgjJk48eYwA/LuRijIA7RbJdbFQGDFMnTp12Lp1K7t27Yq2KEGTkZERcoVY0glGp6SkJOrUqRNSuWYIDCDvyubA8YuKPgAtNgAdw5QpU4aGDRtGW4yQWLRoEWlpadEWI6xESidzDRk5BONGsgFow4g/zBAYIWED0IYRf0TUEIhIDxH5WkQ2isgYP7+PEpF1IrJGROZ770I2SjjRHoC23oNhhJeIGQIRKQU8BVwCNAEGikiTPNk+B1qragvgDeAvkZLHOPUE60YKNYhesL0HMxiGERyR7BG0BTaqe6PZMWAW0Mc3g6ouVNXstuCnQGhD3UaJ5mQ3kgZ0IwXbc4Dgew/mbjKM4ImkIagN/Oizv9VLC8QNQMExZI2YI5jQ2qEMQAfbezB3k2EEj0RqgYiI9AN6qOqN3v61QDtVHeEn7++BEUAXVT3q5/ebgZsBatWq1SrvS6wPHTpEcnJy+JWIEvGmDxSu07x5NZk6tRE7d5ajZs2j3HjjJrp335kv34AB7dmxI/886lq1Mpg169Oc/W7duqCaP1K6iLJgweJ85540qTFHj5bKSStXLos77/zarwzB6BOLxJtO8aYPFE+nrl27rlTV1n5/DBSWtLgb0AH4wGf/HuAeP/m6A+uBmsGUa2GoY5Nw6RSJENyh5J0xw6WLnND69fOfN5aJt/9dvOmjWjydKGoY6mKyHDhHRBqKSFlgADDHN4OIpAHPAr1V1X/TyzB8CHb6aiTcTSePO0ih4w7mbjJihYgZAlXNxLl7PsC1+F9X1bUi8oCIZL8x+jEgGfiXiKwWkTkBijOMHIKZvhrKeodITHO1wWojlojoOgJVfVdVz1XVs1V1opc2TlXneN+7q2otVU31tt4Fl2gYwRPseodITHO1VdVGLGEri42EJ9jeQyjTXCO1qtqMhhEJzBAYBuGPsxRtd5MZDCMUzBAYRpAEu0AOoutusvEJI1TMEBhGCASzQC47X7TcTUVdTNetWxfrPSQoZggMI0JEy91U9NhNBU+JNXdT/GKGwDCiSCjTXIM1GiUhdpMZjdjCDIFhRJlgp7lGczGdDWrHN2YIDCOGiNZiOhvUjm/MEBhGHBLuxXQlaVC7sN6DDX6HjhkCw0hggp0SW7IGtQP3HkKNBxUs8e7CMkNgGAlOMFNiY2VQOxK9jEQYKDdDYBhGUMTCoHYkehmJMFBuhsAwjLATrUHtSPQySsJAeaTHPcwQGIYRNcI9qB2JXka0B8ojNe7hixkCwzBKPMH2HkKJBxVsBR/tgfJQxz2KghkCwzBiglDGKIKJBxVsBR/tgfJQjEZRMUNgGEZCEkoFH82B8lCMRlExQ2AYRsISbAUf7jIj0csoDqXDV5RhGIYRLIMGBWd4svOMHQs//KDUqydMnBgeo5WN9QgMwzBKOMGOexQVUdXwlhhhRGQXsCVPcg1gdxTEiRTxpg/En07xpg/En07xpg8UT6f6qnqGvx9izhD4Q0RWqGrraMsRLuJNH4g/neJNH4g/neJNH4icTuYaMgzDSHDMEBiGYSQ48WIInou2AGEm3vSB+NMp3vSB+NMp3vSBCOkUF2MEhmEYRtGJlx6BYRiGUURi2hCISA8R+VpENorImGjLEw5EZLOIfCkiq0VkRbTlKQoiMl1EdorIVz5p1UTkIxH51vusGk0ZQyGAPhNE5CfvPq0WkUujKWMoiEhdEVkoIutEZK2I3Oalx/I9CqRTTN4nEUkSkf+JyBeePn/20huKyGdenfeaiJQNy/li1TUkIqWAb4CLgK3AcmCgqq6LqmDFREQ2A61VNWbnP4tIZ+AQ8LKqNvPS/gLsVdVHPKNdVVVHR1POYAmgzwTgkKpOiqZsRUFEzgTOVNVVIlIJWAlcDgwhdu9RIJ2uJgbvk4gIUFFVD4lIGWAZcBswCnhLVWeJyD+AL1T1meKeL5Z7BG2Bjaq6SVWPAbOAPlGWyQBUdQmwN09yH+Al7/tLuIc0JgigT8yiqttVdZX3PR1YD9Qmtu9RIJ1iEnUc8nbLeJsC3YA3vPSw3aNYNgS1gR999rcSwzfeBwU+FJGVInJztIUJI7VUdbv3/WegVjSFCRMjRGSN5zqKGTeKLyLSAEgDPiNO7lEenSBG75OIlBKR1cBO4CPgO2C/qmZ6WcJW58WyIYhXzlfVlsAlwB89t0Rcoc4fGZs+yVyeAc4GUoHtwF+jK07oiEgy8CbwJ1U96PtbrN4jPzrF7H1S1SxVTQXq4Dwg50XqXLFsCH4C6vrs1/HSYhpV/cn73Am8jfsDxAM7PD9utj93Z5TlKRaqusN7UE8AzxNj98nzO78JzFTVt7zkmL5H/nSK9fsEoKr7gYVAB+B0EcmOGh22Oi+WDcFy4BxvFL0sMACYE2WZioWIVPQGuhCRisDvgK8KPipmmAMM9r4PBv4dRVmKTXaF6XEFMXSfvIHIacB6VZ3s81PM3qNAOsXqfRKRM0TkdO97edykmPU4g9DPyxa2exSzs4YAvKlgjwOlgOmqGsZXNZx6RKQRrhcA7l0R/4xFnUTkVeACXKTEHcB4YDbwOlAPFz32alWNiQHYAPpcgHM3KLAZuMXHv16iEZHzgaXAl8AJL/lenE89Vu9RIJ0GEoP3SURa4AaDS+Ea7K+r6gNeHTELqAZ8DvxeVY8W+3yxbAgMwzCM4hPLriHDMAwjDJghMAzDSHDMEBiGYSQ4ZggMwzASHDMEhmEYCY4ZAsPwEJEsnyiVq8MZ0VZEGvhGLzWMkkTpwrMYRsJwxFvSbxgJhfUIDKMQvHdE/MV7T8T/ROTXXnoDEVngBTSbLyL1vPRaIvK2F0v+CxH5rVdUKRF53osv/6G3YhQRudWLo79GRGZFSU0jgTFDYBi5lM/jGurv89sBVW0OPIlbzQ7wBPCSqrYAZgJTvPQpwGJVTQFaAmu99HOAp1S1KbAfuNJLHwOkeeUMi5RyhhEIW1lsGB4ickhVk/2kbwa6qeomL7DZz6paXUR2416GctxL366qNURkF1DHd+m/Fxr5I1U9x9sfDZRR1YdE5H3ci29mA7N94tAbxinBegSGERwa4Hso+MaEySJ3jK4n8BSu97DcJ7qkYZwSzBAYRnD09/n8xPv+MS7qLcAgXNAzgPnAcMh5uUiVQIWKyGlAXVVdCIwGqgD5eiWGEUms5WEYuZT33giVzfuqmj2FtKqIrMG16gd6aSOBF0TkLmAXcL2XfhvwnIjcgGv5D8e9FMUfpYAZnrEQYIoXf94wThk2RmAYheCNEbRW1d3RlsUwIoG5hgzDMBIc6xEYhmEkONYjMAzDSHDMEBiGYSQ4ZggMwzASHDMEhmEYCY4ZAsMwjATHDIFhGEaC8/8frjtT1L64FwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAACgCAYAAAAWy/vJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deXwURfbAv89whktu5QqgHIoxkERUBAXBWzkUUUQRLxAVj/XCFQUVdleX9T5xdUFBI+gP1FVc5VIUBQFRAUEOgyI3CoQjIcf7/VGdpDOZSWaS6UxmqO/n05/prq6uftXdU6/qVdUrUVUsFovFYvHlqEgLYLFYLJbKiVUQFovFYvGLVRAWi8Vi8YtVEBaLxWLxi1UQFovFYvGLVRAWi8Vi8YtVEBWAiMwWkWvDHTeSiEi6iPTxIF0VkeOd/ZdF5KFg4pbhPkNE5NOyymkJDhHpISJrSzjf2nmPVSpSrkCIyAIRuTHSclQWKsVLqYyIyH7XYTyQBeQ6xyNUdVqwaanqBV7EjXVU9eZwpCMirYFfgKqqmuOkPQ0I+h1ayoaqLgQ65B+LSDpwo6rO8freIjIZ2KyqY7y+l9dU5HNzYxVEAFS1dv5+SS9HRKrkFzoWS6Sx36N3HInP1pqYQkREeorIZhG5X0S2Af8Rkfoi8l8R2Skifzr7LVzXFDRbRWSYiHwpIhOduL+IyAVljNtGRL4QkQwRmSMiL4jI1AByByPjYyLylZPepyLSyHX+GhHZJCK7ReTBEp7PqSKyTUTiXGEDROQHZ7+riHwtIntEZKuIPC8i1QKkNVlExruO73Wu2SIi1/vEvUhEvhORfSLym4iMc53+wvndIyL7ReT0/Gfrur6biHwrInud327BPpsQn3MDEfmPk4c/RWSW61w/EVnh5GGDiJzvhBcx54nIuPz37DLR3CAivwLznPAZznvY63wjnVzX1xSRfznvc6/zjdUUkY9EZJRPfn4QkQF+8jlFRO529ps7MtzqHB8nIn+IyFHi/F+c8DeBVsCHznu4z5XkEBH5VUR2ub8vEakuIk87z2uLs1/dOVfkHTphKiLHi8hwYAhwn3OvDwO8r3NEZI3zHJ4HxHVumPPOnxKR3cA4EaknIm8473eTiIwRkaN84j/vpLdGRHq70msmIh84z2a9iNzkOuf7rQf73DzFKoiycQzQAEgAhmOe43+c41bAIeD5Eq4/FVgLNAKeAF4TESlD3LeAJUBDYBxwTQn3DEbGq4DrgCZANeAeABE5EXjJSb+Zc78W+EFVFwMHgLN90n3L2c8F7nLyczrQG7ilBLlxZDjfkeccoB3g2/9xABgKHA1cBIwUkf7OuTOd36NVtbaqfu2TdgPgI+BZJ29PAh+JSEOfPBR7Nn4o7Tm/iTFZdnLSesqRoSvwBnCvk4czgfRAz8MPZwEnAOc5x7Mxz6kJsJyi5rSJQArQDfMd3wfkAVOAq/MjiUgS0BzzbHz5HOjpuvdGCp/zWcBCVc1zX6Cq1wC/Apc47+EJ1+nuGFNUb+BhETnBCX8QOA3oDCQBXYFSTUaqOsnJ8xPOvS7xjeMo+f9z0msEbADO8Il2qpO3psAE4DmgHtDWyedQzHfhjr/BSW8s8H/O9wWQBmzG/IcGAn8TEff/JFBeSnpu3qKqditlw/xR+zj7PYHDQI0S4ncG/nQdL8CYqACGAetd5+IBBY4JJS6m8MkB4l3npwJTg8yTPxnHuI5vAT5x9h8G0lznajnPoE+AtMcDrzv7dTCFd0KAuHcCM13HChzv7E8Gxjv7rwP/cMVr747rJ92ngaec/dZO3Cqu88OAL539a4AlPtd/DQwr7dmE8pyBYzEFcX0/8V7Jl7ek7885Hpf/nl15a1uCDEc7cephFNghIMlPvBrAn0A753gi8GKANI9z4h4FvAyMwNj7wSiav7j+L5tLyEu+/C1cYUuAK539DcCFrnPnAem+77C07ydAHoYC37iOBVOAu/9/v7rOx2G++xNdYSOABa74WwDxycs1QEtM5aiO69zfgcn+ZC3tuVXUZlsQZWOnqmbmH4hIvIi84jQ592FMGkeLy8ziw7b8HVU96OzWDjFuM+APVxjAb4EEDlLGba79gy6ZmrnTVtUDwO5A98K0Fi51TAGXAstVdZMjR3vH7LLNkeNvmNpWaRSRAdjkk79TRWS+0/TfC9wcZLr5aW/yCduEqT3nE+jZFKGU59wS887+9HNpS0xhWFYKno2IxInIP8SYqfZR2BJp5Gw1/N3L+abfAa52zCaDMS2eYqjqBozi7wz0AP4LbBGRDpia9echyl/St+d+N5ucsHDg+10rxf9D7uNGQFU/8ri/k9+ddNznm1H4f80o4dpKh1UQZcPXBe7dmObxqapal8KmdiCzUTjYCjQQkXhXWMsS4pdHxq3utJ17NgwUWVVXYz7+CyhqXgJjqlqDqaXWBf5aFhkwLSg3bwEfAC1VtR6mVpufbmkui7dgTEJuWgG/ByGXLyU9598w7+xoP9f9hqmV++MApvWYzzF+4rjzeBXQD2OGq4eppefLsAvILOFeUzC2+97AQfUxx/nwOcZUUk1Vf3eOrwXqAysCXBOq+2jfd9PKCQOf5yIivs+ltHv5ftdC8f+QO41dQLYfedzfSXMfc3G+vFsw775OgGtLe8cRcbttFUR4qINptu9x7I1jvb6hUyNfiuk4qyYipwPF7KxhkvFd4GIR6S6mQ/lRSv923gLuwBSQM3zk2AfsF5GOwMggZZgODBOREx0F5St/HUwNLdOx51/lOrcTY9ppGyDtj4H2InKViFQRkSuAEzG14lAJ+JxVdSumb+BFMZ3ZVUUkX4G8BlwnIr3FdO42d54PmML2Sid+KqZQLk2GLEwrLx7TSsuXIQ9jrnvS6TSNE9NpX905/zXmWf2LAK0HF58Dt1E4CGCBc/ylquYGuGY7gd+DP94GxohIY6fP4GGMKRXge6CTiHQWkRoY01so9/rIuf5SMfMwbse/8gXAydN0YIKI1BGRBOAvLnnA9Pnc7ryryzH9Qh+r6m/AIuDvIlJDRE4GbnBduwK4UMwghmMwptdQ8uIJVkGEh6eBmpgaxjfAJxV03yGYjt7dGLv/O5iCwR9lllFVVwG3Ygr9rRjb8+ZSLnsbY2qYp6q7XOH3YArvDOBVR+ZgZJjt5GEesN75dXML8KiIZGAKkemuaw9iOhi/EjN66jSftHcDF2Nq/7sxnbYX+8gdLKU952swtdA1wA6cgkBVl2A6O58C9mIK3/ya6kMU2vwfoWiLzB9vYFpwvwOrHTnc3AP8CHwL/AE8TtGy4A0gkaIFnz8+xyijfAXxJUYhfRHwCmN3H+O8h0Ad/W7GYypCPzgyL3fCUNWfMZWVOcA65/5uXgNOdO41y+cczvu9HPgH5r23A74qRZ5RmNr+Rud+b2EUbj6LnXR2Yb65gc73BcZk1xrTmpgJjNXCofNvYhReOvApxf8XoT63sCBFzWWWaEZE3gHWqKrnLRhL7CIiQ4Hhqto90rJEEyIyDNPBHTPPzbYgohgROUXMmPOjnGGg/YBiNSWLJVgc890twKRIy2KJPFZBRDfHYOy++zFj+Eeq6ncRlcgStYjIeZj+mu2UbsayHAFYE5PFYrFY/GJbEBaLxWLxi1UQFovFYvFLzHhzbdSokbZu3bpI2IEDB6hVq1ZkBPKIWMuTzU/lJ9byFGv5gfLladmyZbtUtbHfkxXt28OrLSUlRX2ZP39+sbBoJ9byZPNT+Ym1PEUqP1OnqiYkqIqY36lTw5d2efIELNUA5WrMtCAsFoulsjJtGgwfDgcdz2mbNpljgCFDIidXadg+CIvFYvGYBx8sVA75HDxowsvDtGnQujWcffZZtG5tjsOJVRAWi8XiMb/+Gnx4fqF/1FGUWOjnt0o2bQJVKWiVhFNJWAVhsViimmALVC/SDDZeK1/fwwHCixb6lFjoe9UqcWMVhMViiVpCKVDDnWYo954wAeLji4bFx5twN6EU+qG0SsqKVRAWi6XSEWzN3ItadLBphnLvIUNg0iRISAAR8ztpUvEO6lAK/WBbJeXBUwUhIneIyEoRWSUidzph40TkdzGLs68QkQud8DPELJC+VETaOWFHi1kg3ioyiyUGCKbgD6Vm7kUtOtg0Q733kCGQng55eebX3+ilUAr9YFsl5cGzgldETgJuwiwynoRZcOZ45/RTqtrZ2T52wu4GLsT4x7/ZCRsD/E19Fj+3WCzRR7AFfyg1cy9q0cGm6cW9Qyn0i7ZKNGCrpDx4WTM/AVisqgdVNQezuMilJcTPxiw2Eg9ki8hxmOUjF3goo8ViKSfhNgeFUjP3ohYdbJpe3DtYU5Q7fno6zJv3ecBWSXnwzJuriJwAvI9Z8ewQMBezMtRuYBhm2cmlwN2q+qeIdMasI3wIs+rWROAhVV1Xwj2GA8MBmjZtmpKWllbk/P79+6ld2+/a8lFLrOXJ5qfyU1Ke5sxpwsSJHcjKiisIq149l3vuWUufPjuKxD377LNQLb78uIgyb97nBcdXXnka27fXKBavadNM0tJ8F8czMvz7323ZsaM6TZpkceONG4vdO5R4XqXpJeX57nr16rVMVVP9ngw0xTocG2bN1WWYJQhfwizH2BSIw7ReJgCv+7nuTMzSi+0xS+9NBZqWdC/raiM6ORLz46XLBS/uXVKeEhJUjcGo6JaQUPa4U6eqxscXjRMfX77n5EWalQmvXG142vmrqq+paoqqnolZT/dnVd2uqrlq+hVexfRRFCAigul7eAyz4Pt9TrzbvZTVYqkIvBiWGcl7e2EOCtXMEgwVMWcgFvF6FFMT57cVpv/hLRE51hVlALDS57KhwMeq+gemPyLP2Xw+LYsl+ohkQeXFvUPpqA2l4A9mxE8oVMScgVjEa2d974lIQ0wH9K2qukdEnnP6GxRIB0bkR3bWwx0GnOsEPQl8DBwGrvJYVovFcyJZUHlx7wkTijqhg5I7aocMiYxzulatTIvJX7glMF6bmHqo6omqmqSqc52wa1Q1UVVPVtW+qrrVFf+gqvZS1WzneKETN0VV13opq8Xij3C7cfBqclMwcnpxby/MQV5QEXMGYhE7Ac1iCYAXNnsvCqpg5fSqkAy3OcgLKmLOQCxiFYTFEgAvbPaR7ICNltq+V3g9ZyAWsQrCYgmAV/0Fwda4gzVvhSJnKLV9r9casFR+rIKwWAIQis0+3IVpKOYtL/oWKmKtAUvlxyoIS6Umkr7+g7XZe1GYhmLe8qJvwc4bsIBVEJZKTCR9/UPwNnsvCtNQzUbh7luw8wYsYBWEpRITSV//+QRjs/eiMA3VbBTukUQVsdaApfJjFYSl0hJJX/+hEGm3z14Q6ftbKgdWQVgqLZH09R8KlcHtc7ix8wYsYBWEpRITSV//oeBVYRrpCWh23oDFKghLpcWLWrRXNXNbmFpikVIVhIhcYteEtkSKskzsKm34aqRr5hZLtBBMwX8FsE5EnhCRjl4LZIluvJi3EOx9I7XOgsUSq5SqIFT1aqALsAGYLCJfi8hwEanjuXSWqCKShbSd2GWxhJ+gTEequg94F0gDjsUs9LNcREZ5KJslygilkA63awo7sctiCT/B9EH0FZGZwAKgKtBVVS8AkoC7vRXPEk0EW0h74ZrCTuyyWMJPMC2Iy4CnnIV7/qmqO8As7gPc4Kl0lqgi2ELaC3OQndhlsYSfYBTEOGBJ/oGI1BSR1gD5q8RZopNwdygHW0h7YQ6K9MQyiyUWCUZBzADyXMe5TpglivGiQznYQtorc5AdvmqxhJdgFEQVVT2cf+DsV/NOJEtF4NWon2AKaWsOsliig2AUxE4R6Zt/ICL9gF3eiWSpCEIx84TbFGX9/Fgs0UGVIOLcDEwTkecBAX4DhnoqlcVzWrUyZiV/4W7yTVH5rY18UxSU3+XFkCGwYMHn9OzZs+wJWSwWzwhmotwGVT0NOBE4QVW7qep670WzlIVwr5ZmJ6BZLEcuwbQgEJGLgE5ADREBQFUf9VAuSxkIpbaff/zgg8as1KqVUQ6+8ewENIvlyCWYiXIvY/wxjcKYmC4HEjyWy+JDMDOPvVgtzU5As1iOXILppO6mqkOBP1X1EeB0oL23YlncBDvz2Ivavh1xZLEcuQSjIDKd34Mi0gzIxvhjslQQwbYMvKjt2wloFsuRSzAK4kMRORr4J7AcSAfe8lIoS1GCbRl4Vdu3E9AsliOTEhWEs1DQXFXdo6rvYfoeOqrqw8EkLiJ3iMhKEVklInc6YQ1E5DMRWef81nfCL3PiLRSRhk7YcSLyTrlyGAME2zKwtX2LxRJOSlQQqpoHvOA6zlLVvcEkLCInATcBXTGeXy8WkeOB0Ril0w6Y6xyD6QQ/BXgFuMoJGw+MCTo3MUooLQNb27dYLOEiGBPTXKd2LyGmfQKwWFUPqmoO8DlwKdAPmOLEmQL0d/bzgOpAPJAtIj2Abaq6LsT7xhx25rHFYokEwSiIERjnfFkisk9EMkRkXxDXrQR6iEhDEYkHLgRaAk1VdasTZxvQ1Nn/OzAHuAR4G3gIeCz4rMQ2+S2DefM+ty0Di8VSIYiqepe4yA3ALcABYBWQBQxT1aNdcf5U1fo+1w0FGgDfAPcAfwJ3OGtQuOMNB4YDNG3aNCUtLa3I/ffv30/t2rXDna2IEmt5OlLzU3XPHvSoo8ipW7cCpCofR+o7iibKk6devXotU9VUvydVtcQNONPfVtp1ftL5G0ZZrAWOdcKOBdb6xIsH5mFWr/sfUAu4FrippPRTUlLUl/nz5xcLqwimTlVNSFAVMb9Tp4Yv7UjlySuOuPzk5am+9ppq7dqqLVqorltXIXKVhyPuHUUh5ckTsFQDlKvBmJjudW0PAR9iFhEqFRFp4vy2wvQ/vAV84BT4OL/v+7nfs6qaDdQEFNM/4dNNWzkJZZ2FcHtJtVRytm+H/v3hhhugSxfIzISzzoKff460ZBavyc6Gdevgo4/g66/NcRRQqi8mVb3EfSwiLYGng0z/PWfIajZwq6ruEZF/ANMd89MmYJAr7WaYNa8fcYKeA74F9lDYmV2pKWlSm7vfwCsvqZZKyqxZ5gXv2wdPPgl33AGrVkHv3kZJzJ8PHTtGWkpLPr/8Ai+/DDt2QJMm/rfGjaGaa2kcVdi5E9auLdx+/tn8btgAOTmFcWvXhjPPNO//7LPh5JNNTbGSEZSzPh82Y0YolYqq9vATthvoHSD+FuAi1/EMomz1umAntQWrSCyVgE2boEoVaN489Gv37TPKYPJk02p4803o1MmcS0yEBQtMAdGzJ8ybByeeGEbBK5g//4SMDMjKMltmZuD9/fvNs9m7t3DzPd671/wpateGevXMVrdu4b5vWKdO0L07xMWVTX5V+PJLePppo9CPOgqOOcYU+llZ/q+pX98oi/h4o1T27Ck8V60atGtn5BowADp0gPbtYcsW867nzoWPPzZxGzaEXr3Mt3D22SZeyANHw0+pCkJEnsOYecCMeuqMmVFt8UOw6yxYL6mVmKwsWLgQZs82f+A1a0x4cjL062e2k08u/Q+8YAEMGwa//QZjxsBDDxWtcYJRCL5K4qSTwp8nL9mwAUaPhnffDf3a6tWLF/Tt2hUex8cXVyZbtph3kn/sNtc0agR9+5oCuU8fqFGjdBkOH4bp041iWLYMGjSA+++HW281lQJVo/h27Ci+bd9ufjMy4PTTTcHeoYPZWrUKrKwGDjS/mzeb1uPcuWbLf4bNm5sWxnHHmXRatjRbq1ZQp07oz7mMBNOCWOrazwHeVtWvPJIn6pkwoajpCPxPagtWkVgqiF9/NQph9myYMwcOHDCFec+eMGKEURrvvw/jxsHYsabTqG9foyx69ICqVQvTysw0TcGnnoLjj4evvoLTTgt8744djZLo1ctsc+ZAUpK3+Q0Hu3fD+PHwwgvmWY0ebfJbo4Yp+PN/fferVzetgrp1zX55UDXPe88eU/ufOdMUsq+/bu5xwQVGWVx4oVE6bnbtMmakF16AbdvghBPglVfg6quLzkwVMbLWrWvyF05atIBrrjGbqlG2+a2LL7+Ed94xs17d1KtXTGnUr1rVfKthJhgF8S6Qqaq5ACISJyLx6jPk1GIIdp2FYBWJBVNj/OIL8ycP17BQVdNK+Ogj00pYudKEJyTA0KHmXr16Qa1ahdfcf78pSP77X2OCeOUVePZZY2a46CLo14+6W7fCbbeZ/oVbboEnniiaRiDat4fPPy80M8yZY0xSwZCVZWR6801T66hWzSiskn7r1DH273POCa6W7SYzE55/3iiHjAzT6f7II3BsBHx4ikDNmma7/HKzZWWZWvnMmUapz5hh8t27NwwYQN3sbNMJOHWqyct55xkT4DnnRLYfQMQooOOPL+yQzMkx3/9vv5kCxfd38WLYvZtj+vSBe+8Nv0yBhjdp4bDTb4DaruPawKLSrqvorTINcw2WsgyHrex5CpUS8/P116qDB6tWqaIKZljohx+W/6Zr16qefbZJs2pVsz9xourq1WYYarBkZKi+957q0KGqDRqY9ED12GNVP/mkbLJt2KDaqpVq/fqqS5cGjpeXp/rtt6q33lp472bNVC+5RPX881V791bt0UP1tNNUk5NVExNVO3RQbdPGPMf4eHNNrVqqAweqTpumumeP31sVvKO8PNW331Zt3dpce+GFqitXli2fFUVOjuqXX6refbdq27aF76hGDdXhw1VXrYq0hOXnwAFdOGtWmS+nhGGuwSiIFcGERXqLRgVRFip9ntavV33sMdUZM1R37Cg1erH8ZGUZTdm1q/k869ZVvesu1Q8+UD3pJBN2xRWq27aFLtuhQ6pjx6pWq6Zar57q88+r7tsXejr+yM5WXbBAfx41SnX37vKl9csvphCuV0918eKi57ZsUf3nP1U7dSos6K680iiknJzg75GVZa4ZMUL1mGMKleV556m+/LLq1q0FUefPn6/6+eeqp5xi4iUlqX72WfnyGAny8lS//15Xjx6tumtXpKUJK17NgwhGQXwFJLuOU4CvS7uuojerICLM9u2qt91WWNvP3046yYS/957qzp3FLivIz7Ztqo88UlhYtW9vCvCMjMLIWVlG+VSrZmrYr78efI3/s89U27UzaV91VZECMJyE7f2kp5vaft26qgsWqE6fbmrscXEmD6efrvrKK6p//ln+e+Xmqn71leo996ged5xJX0S1WzfVxx/XHd27m7DmzVUnTw5NEVVCKu1/qBxEUkGcAmwAFgJfAuuBlNKuq+jNKogQyMlR/f571UmTTKHw0Ueqhw+XLa19+1THjTMzg+PiVG++WXXTJtVFi1T/9jfVc88tNGeA6sknq95+u+rMmaq7d+u3r7yieu21ptAH1QsuUJ092xRagfjpJ2M+AWNKWb8+cNxt24xCANXjj1f99NOy5TNIwvrN/fprYYGdX0A/8IDqmjXhu4cveXmqP/xglHXnzqqg2TVrqo4fr3rggHf3rUBsuVCUkhREUL6YRKQq0ME5XKtmlnOlIjU1VZcuXVokbMGCBfT0oGc/kpQpT1u3wjffmA6txYth6VIzdBBMp1xenhkeOGgQXHWVGa5XWmfd4cPw6qvw6KNmmN/AgaaHvb2f1WgPHzb3nD/fjNb56is4dKjwfO3aZjjobbeZ4YHBkJdn7n/ffWaY4yOPwF13mfkK+ecnTTIjaw4dMr8PPBB6h2yIhP2b+/13eOYZM2Szd++gx/hnZ2ezefNmMjMzS49cEjk5ZB4+TA1ff/NRTGZmJjU8/g4qmmDyVKNGDVq0aEFV94g7QETK5YvpVuBo13F94JbSrqvozesWhJf+lUKh1Dzl5Kh+843pdB04ULVly8IaaJUqqqmppmPzzTdVf/5ZNTPT2PevvFK1Zk0TLyFBdfRo1R9/LJ5+bq5qWlphzfass8z9QiEzU3XhQtXx443NPkDnaFBs3qzar5+RpUsX1WXLVFesUD31VBN29tne1rh9qCy1040bN+rOnTs1L5RO9wDsC1c/TSUh1vKjWnqe8vLydOfOnbpx48Zi5/Cgk/q70q6r6M1LBTF1alErCZjjSCgJv3lKTzfmooEDjW0+X8iEBNOh++STxsZ88GDJie/bZxTHBRcU2roTE1X//ndzjzlzVFNSCsM/+ii0UT/B5idU8vJU333X9F/ExZmtcWOTlzAUkKFQWRTE6tWrw6IcVGOvQI21/KgGl6e8vDxdvXp1sfCSFEQw8yDiRESchBCROKBaKdfEFJXOLUZGhjHVfPqp2fKdvTVvbpzBnXuumTRzzDGhpVunjpkkdPXVxr3AjBlmvPgDD5gNzMSOKVNMxsvq0iDciMBll5n5Aw89ZI4ffdTMTziCCX2NL0ssU5bvIRgF8Qnwjoi84hyPAGaHfKcoplK4xdiyBaZMoXNaGqxebSbQ1KxpFMHIkUYpnHBC+Py3NG5sJnrdcovxMTN9uukruOEGz+34ZaZ+fTOByxJxdu/eTe/exuXatm3biIuLo3HjxgAsWbKEar4uR1wsXbqUN954g2effbbEe3Tr1o1FixaFT2hLMYJREPdjFuW52Tn+AQixahrdRNQtxvffG++fb78N2dnEtWsHd99tFMIZZ5TfVUEwtGljZhFbYpZp00qf/R8KDRs2ZMWKFQCMGzeO2rVrc8899xScz8nJoUoV/8VPamoqqan++0zdRKNyyM3NJa6ytLyDoNR55aqaBywG0oGuwNnAT96KVbmYMKGoaxbw2C1GXp5x/9CnD3TuDO+9BzffDOvXs2zSJPjHP4w5pSKUgyXmCWUNk/IwbNgwbr75Zk499VTuu+8+lixZwumnn06XLl3o1q0ba9euBcxIsIsvvhgwyuX666+nZ8+etG3btkirIn8FtfyRYwMHDqRjx44MGTIkv6+Ujz/+mI4dO5KSksLtt99ekK6b9PR0evToQXJyMsnJyUUUz+OPP05iYiJJSUmMHj0agPXr19OnTx+SkpJITk5mw4YNRWQGuO2225g8eTIArVu35v777yc5OZkZM2bw6quvcsopp5CUlMRll13GQcd+vX37dgYMGEBSUhJJSUksWrSIhx9+mKefLlxd4cEHH+SZZ54p97sIloAtCBFpDwx2tl3AOwCq2qtiRKs8BOtfqdwcOmT86Tz1lKimpWoAABKdSURBVPFW2ayZUQbDhxfa03/7Lcw3tRzpVGQf2+bNm1m0aBFxcXHs27ePhQsXUqVKFebMmcNf//pX3nvvvWLXrFmzhvnz55ORkUGHDh0YOXJksaGa3333HatWraJZs2acccYZfPXVV6SmpjJixAi++OIL2rRpw+DBg/3K1KRJEz777DNq1KjBunXrGDx4MEuXLmX27Nm8//77LF68mPj4eP744w8AhgwZwujRoxkwYACZmZnk5eXxWyn/y4YNG7J8uXGCvXv3bm666SYAxowZw2uvvcaoUaO4/fbbOeuss5g5cya5ubns37+fZs2acemll3LnnXeSl5dHWloaS5YsCfm5l5WSTExrMJPjLlbV9QAicleFSFUJGTLEww7p7dvhxRfNtmuXcdI2dapxPFaCrdZiCQcV2cd2+eWXF5hY9u7dy7XXXsu6desQEbIDrLJ20UUXUb16dapXr06TJk3Yvn07LVq0KBKna9euBWGdO3cmPT2d2rVr07ZtW9q0aQPA4MGDmTRpUrH0s7Ozue2221ixYgVxcXH87Az6mDNnDtdddx3xjvmgQYMGZGRk8PvvvzNgwACAoOdTXHHFFQX7K1euZMyYMezZs4f9+/dz3nnnATBv3jzeeOMNAOLi4qhXrx716tWjYcOGfPfdd2zfvp0uXbrQsGHDoO4ZDkpSEJcCVwLzReQTIA2wwyJCISvLFPjubefOosc7dpiJY9nZcMkl8Je/GD/wdgSKpYKoyD62Wi7Ptg899BC9evVi5syZpKenB5xgWN1lSo2LiyPHvTJbCHEC8dRTT9G0aVO+//578vLyyjSJrkqVKuS53HL7TlB053vYsGHMmjWLpKQkJk+ezIIFC0pM+8Ybb2Ty5Mls27aN66+/PmTZykPAPghVnaWqVwIdgfnAnUATEXlJRM6tKAGjjrw8M5KmSRMz2qdFC9OP0KcPXHkljBplZv2+/TZ8951RIsOHG5PS+++b5SetcrBUIBXex+awd+9emjur9OXb68NJhw4d2LhxI+np6QC88847AeU49thjOeqoo3jzzTfJzc0F4JxzzuE///lPQR/BH3/8QZ06dWjRogWzZs0CICsri4MHD5KQkMDq1avJyspiz549zJ07N6BcGRkZHHvssWRnZzPN1dHTu3dvXnrpJcB0Zu/duxeAAQMG8Mknn/Dtt98WtDYqimA6qQ+o6ltq1qZuAXyHGdlk8eWnn8ziMaNGmRXHxo83C5K8+67x9b9qlTEnZWebxVbWrjWth+ee8++iwmKpAIYMMV5JEhJM3SQhwRx7Pcfnvvvu44EHHqBLly4h1fiDpWbNmrz44oucf/75pKSkUKdOHer5LhoE3HLLLUyZMoWkpCTWrFlTUNs///zz6du3L6mpqXTu3JmJEycC8Oabb/Lss89y8skn061bN7Zt20bLli0ZNGgQJ510EoMGDaJLCWt5PPbYY5x66qmcccYZdHStQ/7MM88wf/58EhMTSUlJYfXq1QBUq1aNXr16MWjQoIofARVoBl20bRF11nf4sHFmVq2a8c0/ZYpnM3gry0zdcGHz4w3+ZsyWlWieeZzheAPOy8vTkSNH6pNPPhl1+cnNzdWkpCT9+eefA8YJNk+hzqSO4PJJMcKyZZCaatYc7t/fTGIbOtSaiSyWSsCrr75K586d6dSpE3v37mXEiBGRFikkVq9ezfHHH0/v3r1p165dhd8/mIlyFn8cPGjWJ/7Xv6BpU7O8Yf/+kZbKYrG4uOuuu7jrrqKDLzMyMiIkTeiceOKJbNy4MWL3twqiLCxYADfdBOvXm98nnoCjj460VBaLxRJWrIkpFPbuNTOae/Uyo5XmzjW9eVY5WCyWGMS2IIIlJwfOPx+WLDG+kB59tPjYQIvFYokhrIIIln/9y6zKNm2aWXXNYrFYYpwj3sQ0bRq0bm1W2GzdOoCDslWr4OGHzZoDAfy5WCyWQnr16sX//ve/ImFPP/00I0eODHhNz549yV82+MILL2TPnj3F4owbN65gPkIgZs2aVTCHAODhhx9mzpw5oYhvcTiiFURQXixzcsx6yXXrGl9JdviqxVIqgwcPJi0trUhYWlpaQId5vnz88cccXca+PV8F8eijj9KnT58ypRUp8mdzR5ojWkGU5MWygH/+E5YuhRdeMO4zLBZLqQwcOJCPPvqIw4cPA8al9pYtW+jRowcjR44kNTWVTp06MXbsWL/Xt27dml27dgEwYcIE2rdvT/fu3QtcggN+3WYvWrSIDz74gHvvvZfOnTuzYcMGhg0bxrvvvgvA3Llz6d69O4mJiVx//fVkZWUV3G/s2LEkJyeTmJjImjVrislUmd2Cjx8/3hO34J72QTjeX28EFPgRuA54GTgL2OtEG6aqK0TkMuBR4A+gv6ruFpHjgL+p6hXFUy8/pXqxXLnSzHUYOBAGDfJCBIvFe+68E5zFe8pCzdzc4svLdu4MrgLJlwYNGtC1a1dmz55Nv379SEtLY9CgQYgIEyZMoEGDBuTm5tK7d29++OEHTj75ZL/pLFu2jLS0NFasWEFOTg7JycmkpKQAcOmll/p1m923b18uvvhiBg4cWCStzMxMhg0bxvvvv09ycjJDhw7lpZde4s477wSgUaNGLF++nBdffJGJEyfy73//u8j1ldkteN26dRk6dGjY3YJ71oIQkebA7UCqqp4ExGG8wwLcq6qdnS3/yx0FnAK8AuT3Ao8HxnglYyBvla1aYUxL111nTEsvvOCVCBZLzOI2M7nNS9OnTyc5OZkuXbqwatWqIuYgXxYuXMiAAQOIj4+nbt269O3bt+DcypUr6dGjB4mJiUybNo1Vq1aVKM/atWtp06ZNwYzka6+9li+++KLg/KWXXgpASkpKgYM/N9nZ2dx0000kJiZy+eWXF8gdrFvw+CBGPfq6BfeXv3nz5hX05eS7BU9ISChwC/7pp5+GzS2416OYqgA1RSQbiAe2lBA3D6juxMsWkR7ANlVd55VwEyaYPge3manAi+UTTxjT0vTp1rRkiW5KqOkHw6GMDOrUqRPydf369eOuu+5i+fLlHDx4kJSUFH755RcmTpzIt99+S/369Rk2bFgx19jBEqrb7NLIdxkeyF34kegW3LMWhKr+DkwEfgW2AntV9VPn9AQR+UFEnhKRfEfufwfmAJcAbwMPAY95JR+U4MUyyTEtDRpkFu2xWCwhU7t2bXr16sX1119f0HrYt28ftWrVol69emzfvp3Zs2eXmMaZZ57JrFmzOHToEBkZGXz44YcF5wK5za5Tp45fdxodOnQgPT2dDRs2AMYr61lnnRV0fo5Et+CetSBEpD7QD2gD7AFmiMjVwAPANqAaMAnjOvxRVf0M+My5dijwMdBeRO4B/gTuUNWDPvcYDgwHaNq0aTENu3///lK1bvPm4HZFLzk5ZFx2K9Vr1eLbwYPJLmetJNwEk6dowubHG+rVqxc2n0O5ubllTqt///5cddVVvPbaa2RkZNC2bVtOOukk2rdvT4sWLTj11FPJzMwkIyOD3NxcDhw4QEZGBqrK/v37adeuHf379ycxMZHGjRvTuXNnsrKyyMjI4MEHH6Rr1640bNiQ1NRU9u/fT0ZGBn379mXUqFE8/fTTvPHGG2RnZ3Po0CGys7N54YUXGDp0KLm5uSQnJzNkyJAi96tevToHDhzwm+ehQ4dyzTXXMHnyZPr06UOtWrXIyMjgjDPO4LzzziM5OZlq1apx7rnnMnbs2IL+jTFjxlC1alWmTJlCmzZt6N+/PyeeeCIJCQkkJiYW5N8tAxAwfxMmTOD222/n1VdfJS4ujieffJLU1FSysrLo3r079erVK1BWvmRmZob2fQZy81reDbgceM11PBR40SdOT+C/PmHxwDygKvA/oBZwLXBTSfcLm7vv8eNVQfXdd0O/tgKoLO6kw4XNjzdYd9+BibX8qJo8BeMWvDK5+/4VOE1E4kVEgN7ATyJyLIAT1h9Y6XPdvcCzqpoN1MSMgMpzFIe3/PijWe3tiivMpDiLxWKJAtasWeOJW3DPTEyqulhE3gWWAzmYlegmAbNFpDFmfesVwM3514hIM6Crqj7iBD0HfIsxUXnrSzs720yIq1/fLBlqsVgsUULHjh09cQvu6SgmVR0L+M6EObuE+FuAi1zHM4AZ3kjnw+OPw/Ll8N570KhRhdzSYrFYKjNH9EzqAn74wXhnvfJKcMZCWyzRjjEvWyyGsnwPVkG4TUvPPRdpaSyWsFCjRg12795tlYQFMMph9+7dIc/dsO6+v/rKtCBmzLCmJUvM0KJFCzZv3szOnTvLnVZmZmaZJoVVVmItPxBcnmrUqEGLFi1CStcqiJ494eefoW3bSEtisYSNqlWr0qZNm7CktWDBArp06RKWtCoDsZYf8C5P1sQEVjlYLBaLH6yCsFgsFotfrIKwWCwWi18kVkY5iMhOYJNPcCNgVwTE8ZJYy5PNT+Un1vIUa/mB8uUpQVUb+zsRMwrCHyKyVFVTIy1HOIm1PNn8VH5iLU+xlh/wLk/WxGSxWCwWv1gFYbFYLBa/xLqCmBRpATwg1vJk81P5ibU8xVp+wKM8xXQfhMVisVjKTqy3ICwWi8VSRmJWQYjI+SKyVkTWi8joSMtTXkQkXUR+FJEVIrI00vKUBRF5XUR2iMhKV1gDEflMRNY5v/UjKWMoBMjPOBH53XlPK0TkwkjKGAoi0lJE5ovIahFZJSJ3OOHR/I4C5Skq35OI1BCRJSLyvZOfR5zwNiKy2Cnv3hGRamG5XyyamEQkDvgZOAfYjFl0aLCqro6oYOVARNKBVFWN2vHbInImsB94Q1VPcsKeAP5Q1X84iry+qt4fSTmDJUB+xgH7VXViJGUrC85qj8eq6nIRqQMswyzUNYzofUeB8jSIKHxPzkqctVR1v4hUBb4E7gD+AvyfqqaJyMvA96r6UnnvF6stiK7AelXdqKqHgTSgX4RlOuJR1S+AP3yC+wFTnP0peL1yYBgJkJ+oRVW3qupyZz8D+AloTnS/o0B5ikqcZaT3O4dVnU0xC7G964SH7R3FqoJoDvzmOt5MFH8UDgp8KiLLRGR4pIUJI01Vdauzvw1oGklhwsRtIvKDY4KKGnOMGxFpDXQBFhMj78gnTxCl70lE4kRkBbAD+AzYAOxR1RwnStjKu1hVELFId1VNBi4AbnXMGzGFGntntNs8XwKOAzoDW4F/RVac0BGR2sB7wJ2qus99LlrfkZ88Re17UtVcVe0MtMBYSzp6da9YVRC/Ay1dxy2csKhFVX93fncAMzEfRiyw3bET59uLd0RYnnKhqtudP3Ae8CpR9p4cu/Z7wDRV/T8nOKrfkb88Rft7AlDVPcB84HTgaBHJX98nbOVdrCqIb4F2Ts9+NeBK4IMIy1RmRKSW08GGiNQCzgVWlnxV1PABcK2zfy3wfgRlKTf5BanDAKLoPTkdoK8BP6nqk65TUfuOAuUpWt+TiDQWkaOd/ZqYgTg/YRTFQCda2N5RTI5iAnCGrT0NxAGvq+qECItUZkSkLabVAGYVwLeiMT8i8jbQE+N5cjswFpgFTAdaYbzxDlLVqOj4DZCfnhizhQLpwAiX/b5SIyLdgYXAj0CeE/xXjM0+Wt9RoDwNJgrfk4icjOmEjsNU8Ker6qNOGZEGNAC+A65W1axy3y9WFYTFYrFYykesmpgsFovFUk6sgrBYLBaLX6yCsFgsFotfrIKwWCwWi1+sgrBYLBaLX6yCsFhKQURyXV4/V4TTO7CItHZ7g7VYKhNVSo9isRzxHHJcG1gsRxS2BWGxlBFnjY4nnHU6lojI8U54axGZ5ziCmysirZzwpiIy0/Hl/72IdHOSihORVx3//p86M2QRkduddQx+EJG0CGXTcgRjFYTFUjo1fUxMV7jO7VXVROB5zMx9gOeAKap6MjANeNYJfxb4XFWTgGRglRPeDnhBVTsBe4DLnPDRQBcnnZu9ypzFEgg7k9piKQUR2a+qtf2EpwNnq+pGxyHcNlVtKCK7MIvUZDvhW1W1kYjsBFq4XSA4Lqg/U9V2zvH9QFVVHS8in2AWJJoFzHKtA2CxVAi2BWGxlA8NsB8Kbp85uRT2DV4EvIBpbXzr8tZpsVQIVkFYLOXjCtfv187+IowHYYAhGGdxAHOBkVCw6Eu9QImKyFFAS1WdD9wP1AOKtWIsFi+xNRKLpXRqOit45fOJquYPda0vIj9gWgGDnbBRwH9E5F5gJ3CdE34HMElEbsC0FEZiFqvxRxww1VEiAjzr+P+3WCoM2wdhsZQRpw8iVVV3RVoWi8ULrInJYrFYLH6xLQiLxWKx+MW2ICwWi8XiF6sgLBaLxeIXqyAsFovF4herICwWi8XiF6sgLBaLxeIXqyAsFovF4pf/B+2JWTlJSR0yAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "HwSHnFH7zDVP"
|
||
},
|
||
"source": [
|
||
"### Weight distribution per layer - Model with no dropout"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "7pntsEc5Gxbd",
|
||
"outputId": "0eb3e5b4-ce68-4c4e-ffe7-a13fb6d5ad7d",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
}
|
||
},
|
||
"source": [
|
||
"for par in model2.parameters():\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" plt.xlim(-2,2)\n",
|
||
" plt.show()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAU4klEQVR4nO3df6zddZ3n8edrqChxRH51OiwlW8w046KJig3U0Uxc2YGCE8tm1WA2S3VZuxNw42Q2GeuaLFlcs7CbjDtklE0jHcvGFVlmXLparB3ATPaPIhflh4AOVwZCG6AdijAuGVyc9/5xPtXD9dx7Tz+9vecUn4/k5H6/7+/nez7v+71tX/f7Pd9zmqpCkqQevzLpBiRJxy5DRJLUzRCRJHUzRCRJ3QwRSVK3FZNuYKmddtpptWbNmkm3IUnHlHvuuedvqmrl4e73iguRNWvWMDMzM+k2JOmYkuTxnv28nCVJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknq9op7x7o0rjVbvj7pFkZ67Jr3TroFaWyeiUiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6jZWiCQ5KcktSb6f5OEk70hySpLdSR5pX09uY5PkuiSzSe5Pcs7Q82xq4x9Jsmmo/vYkD7R9rkuSVh85hyRpOox7JvLHwDeq6o3AW4CHgS3A7VW1Fri9rQNcBKxtj83A9TAIBOAq4DzgXOCqoVC4Hvjo0H4bWn2+OSRJU2DREEnyeuC3gRsAquonVfUjYCOwvQ3bDlzSljcCN9bAHuCkJKcDFwK7q+pgVT0L7AY2tG0nVtWeqirgxjnPNWoOSdIUGOdM5CzgAPCnSb6b5AtJXgusqqon25ingFVt+QzgiaH997baQvW9I+osMMfLJNmcZCbJzIEDB8b4liRJS2GcEFkBnANcX1VvA/4vcy4rtTOIWvr2xpujqrZW1bqqWrdy5cqj2YYkacg4IbIX2FtVd7X1WxiEytPtUhTt6/62fR9w5tD+q1ttofrqEXUWmEOSNAUWDZGqegp4IslvttL5wEPADuDQHVabgFvb8g7gsnaX1nrguXZJahdwQZKT2wvqFwC72rbnk6xvd2VdNue5Rs0hSZoC4/5/Iv8G+FKS44FHgY8wCKCbk1wOPA58sI3dCVwMzAIvtLFU1cEknwbubuOurqqDbfkK4IvACcBt7QFwzTxzSJKmwFghUlX3AutGbDp/xNgCrpznebYB20bUZ4A3j6g/M2oOSdJ08B3rkqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSeo2VogkeSzJA0nuTTLTaqck2Z3kkfb15FZPkuuSzCa5P8k5Q8+zqY1/JMmmofrb2/PPtn2z0BySpOlwOGci/7iq3lpV69r6FuD2qloL3N7WAS4C1rbHZuB6GAQCcBVwHnAucNVQKFwPfHRovw2LzCFJmgJHcjlrI7C9LW8HLhmq31gDe4CTkpwOXAjsrqqDVfUssBvY0LadWFV7qqqAG+c816g5JElTYNwQKeCbSe5JsrnVVlXVk235KWBVWz4DeGJo372ttlB974j6QnO8TJLNSWaSzBw4cGDMb0mSdKRWjDnuXVW1L8mvAbuTfH94Y1VVklr69sabo6q2AlsB1q1bd1T7kCT93FhnIlW1r33dD3yVwWsaT7dLUbSv+9vwfcCZQ7uvbrWF6qtH1FlgDknSFFg0RJK8NsnrDi0DFwDfA3YAh+6w2gTc2pZ3AJe1u7TWA8+1S1K7gAuSnNxeUL8A2NW2PZ9kfbsr67I5zzVqDknSFBjnctYq4KvtrtsVwP+oqm8kuRu4OcnlwOPAB9v4ncDFwCzwAvARgKo6mOTTwN1t3NVVdbAtXwF8ETgBuK09AK6ZZw5J0hRYNESq6lHgLSPqzwDnj6gXcOU8z7UN2DaiPgO8edw5JEnTwXesS5K6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6jZ2iCQ5Lsl3k3ytrZ+V5K4ks0m+kuT4Vn91W59t29cMPccnW/0HSS4cqm9otdkkW4bqI+eQJE2HwzkT+Tjw8ND6tcBnq+o3gGeBy1v9cuDZVv9sG0eSs4FLgTcBG4DPt2A6DvgccBFwNvChNnahOSRJU2CsEEmyGngv8IW2HuA9wC1tyHbgkra8sa3Ttp/fxm8EbqqqF6vqr4FZ4Nz2mK2qR6vqJ8BNwMZF5pAkTYFxz0T+K/CHwN+39VOBH1XVS219L3BGWz4DeAKgbX+ujf9Zfc4+89UXmuNlkmxOMpNk5sCBA2N+S5KkI7VoiCT5XWB/Vd2zDP10qaqtVbWuqtatXLly0u1I0i+NFWOMeSfwviQXA68BTgT+GDgpyYp2prAa2NfG7wPOBPYmWQG8HnhmqH7I8D6j6s8sMIckaQoseiZSVZ+sqtVVtYbBC+N3VNU/B+4E3t+GbQJubcs72jpt+x1VVa1+abt76yxgLfBt4G5gbbsT6/g2x462z3xzSJKmwJG8T+QTwB8kmWXw+sUNrX4DcGqr/wGwBaCqHgRuBh4CvgFcWVU/bWcZHwN2Mbj76+Y2dqE5JElTYJzLWT9TVd8CvtWWH2VwZ9XcMX8HfGCe/T8DfGZEfSewc0R95BySpOngO9YlSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1G3REEnymiTfTnJfkgeT/IdWPyvJXUlmk3wlyfGt/uq2Ptu2rxl6rk+2+g+SXDhU39Bqs0m2DNVHziFJmg7jnIm8CLynqt4CvBXYkGQ9cC3w2ar6DeBZ4PI2/nLg2Vb/bBtHkrOBS4E3ARuAzyc5LslxwOeAi4CzgQ+1sSwwhyRpCiwaIjXw47b6qvYo4D3ALa2+HbikLW9s67Tt5ydJq99UVS9W1V8Ds8C57TFbVY9W1U+Am4CNbZ/55pAkTYGxXhNpZwz3AvuB3cAPgR9V1UttyF7gjLZ8BvAEQNv+HHDqcH3OPvPVT11gjrn9bU4yk2TmwIED43xLkqQlMFaIVNVPq+qtwGoGZw5vPKpdHaaq2lpV66pq3cqVKyfdjiT90jisu7Oq6kfAncA7gJOSrGibVgP72vI+4EyAtv31wDPD9Tn7zFd/ZoE5JElTYJy7s1YmOaktnwD8DvAwgzB5fxu2Cbi1Le9o67Ttd1RVtfql7e6ts4C1wLeBu4G17U6s4xm8+L6j7TPfHJKkKbBi8SGcDmxvd1H9CnBzVX0tyUPATUn+I/Bd4IY2/gbgvyeZBQ4yCAWq6sEkNwMPAS8BV1bVTwGSfAzYBRwHbKuqB9tzfWKeOSRJU2DREKmq+4G3jag/yuD1kbn1vwM+MM9zfQb4zIj6TmDnuHNIkqaD71iXJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUbdEQSXJmkjuTPJTkwSQfb/VTkuxO8kj7enKrJ8l1SWaT3J/knKHn2tTGP5Jk01D97UkeaPtclyQLzSFJmg7jnIm8BPzbqjobWA9cmeRsYAtwe1WtBW5v6wAXAWvbYzNwPQwCAbgKOA84F7hqKBSuBz46tN+GVp9vDknSFFg0RKrqyar6Tlv+W+Bh4AxgI7C9DdsOXNKWNwI31sAe4KQkpwMXArur6mBVPQvsBja0bSdW1Z6qKuDGOc81ag5J0hQ4rNdEkqwB3gbcBayqqifbpqeAVW35DOCJod32ttpC9b0j6iwwx9y+NieZSTJz4MCBw/mWJElHYOwQSfKrwJ8Bv19Vzw9va2cQtcS9vcxCc1TV1qpaV1XrVq5ceTTbkCQNGStEkryKQYB8qar+vJWfbpeiaF/3t/o+4Myh3Ve32kL11SPqC80hSZoC49ydFeAG4OGq+qOhTTuAQ3dYbQJuHapf1u7SWg881y5J7QIuSHJye0H9AmBX2/Z8kvVtrsvmPNeoOSRJU2DFGGPeCfwL4IEk97bavwOuAW5OcjnwOPDBtm0ncDEwC7wAfASgqg4m+TRwdxt3dVUdbMtXAF8ETgBuaw8WmEOSNAUWDZGq+j9A5tl8/ojxBVw5z3NtA7aNqM8Abx5Rf2bUHJKk6eA71iVJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUbdEQSbItyf4k3xuqnZJkd5JH2teTWz1Jrksym+T+JOcM7bOpjX8kyaah+tuTPND2uS5JFppDkjQ9Vowx5ovAnwA3DtW2ALdX1TVJtrT1TwAXAWvb4zzgeuC8JKcAVwHrgALuSbKjqp5tYz4K3AXsBDYAty0wh/SKtmbL1yfdwrweu+a9k25BU2bRM5Gq+kvg4JzyRmB7W94OXDJUv7EG9gAnJTkduBDYXVUHW3DsBja0bSdW1Z6qKgZBdckic0iSpkTvayKrqurJtvwUsKotnwE8MTRub6stVN87or7QHL8gyeYkM0lmDhw40PHtSJJ6HPEL6+0Mopagl+45qmprVa2rqnUrV648mq1Ikob0hsjT7VIU7ev+Vt8HnDk0bnWrLVRfPaK+0BySpCnRGyI7gEN3WG0Cbh2qX9bu0loPPNcuSe0CLkhycrvL6gJgV9v2fJL17a6sy+Y816g5JElTYtG7s5J8GXg3cFqSvQzusroGuDnJ5cDjwAfb8J3AxcAs8ALwEYCqOpjk08DdbdzVVXXoxforGNwBdgKDu7Jua/X55pAkTYlFQ6SqPjTPpvNHjC3gynmeZxuwbUR9BnjziPozo+aQJE0P37EuSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqdui/ymVdCTWbPn6pFuQdBR5JiJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuUx8iSTYk+UGS2SRbJt2PJOnnpvrNhkmOAz4H/A6wF7g7yY6qemiynUm/nKb5zaOPXfPeSbfwS2mqQwQ4F5itqkcBktwEbAQMkSHT/Bdb0ivbtIfIGcATQ+t7gfPmDkqyGdjcVl9M8r1l6O1InQb8zaSbGMOx0Oex0CPY51J7WZ+5doKdLOxYOZ6/2bPTtIfIWKpqK7AVIMlMVa2bcEuLss+lcyz0CPa51OxzaSWZ6dlv2l9Y3wecObS+utUkSVNg2kPkbmBtkrOSHA9cCuyYcE+SpGaqL2dV1UtJPgbsAo4DtlXVg4vstvXod7Yk7HPpHAs9gn0uNftcWl19pqqWuhFJ0i+Jab+cJUmaYoaIJKnbMR8iSf5Lku8nuT/JV5OcNM+4iX58SpIPJHkwyd8nmfd2vySPJXkgyb29t9wdicPoc2LHM8kpSXYneaR9PXmecT9tx/HeJMt2Q8ZixybJq5N8pW2/K8ma5eptTh+L9fnhJAeGjuG/mkCP25Lsn++9Xxm4rn0P9yc5Z7l7bH0s1ue7kzw3dCz//QR6PDPJnUkean/HPz5izOEfz6o6ph/ABcCKtnwtcO2IMccBPwTeABwP3Aecvcx9/iMGb+b5FrBugXGPAadN8Hgu2uekjyfwn4EtbXnLqJ952/bjCRy/RY8NcAXw39rypcBXprTPDwN/sty9zenht4FzgO/Ns/1i4DYgwHrgrint893A1yZ8LE8HzmnLrwP+asTP/LCP5zF/JlJV36yql9rqHgbvJZnrZx+fUlU/AQ59fMqyqaqHq+oHyzlnjzH7nPTx3Ahsb8vbgUuWce7FjHNshvu/BTg/SZaxR5j8z3AsVfWXwMEFhmwEbqyBPcBJSU5fnu5+bow+J66qnqyq77TlvwUeZvCpIMMO+3ge8yEyx79kkKJzjfr4lLkHb1oU8M0k97SPc5lGkz6eq6rqybb8FLBqnnGvSTKTZE+S5QqacY7Nz8a0X4CeA05dlu5G9NDM9zP8Z+2yxi1JzhyxfdIm/WfxcLwjyX1Jbkvypkk20i6hvg24a86mwz6eU/0+kUOS/AXw6yM2faqqbm1jPgW8BHxpOXsbNk6fY3hXVe1L8mvA7iTfb7/lLJkl6vOoWqjH4ZWqqiTz3af+D9uxfANwR5IHquqHS93rK9j/Br5cVS8m+dcMzp7eM+GejlXfYfDn8cdJLgb+F7B2Eo0k+VXgz4Dfr6rnj/T5jokQqap/stD2JB8Gfhc4v9qFvTmW5eNTFutzzOfY177uT/JVBpcdljRElqDPo348F+oxydNJTq+qJ9up9v55nuPQsXw0ybcY/OZ1tENknGNzaMzeJCuA1wPPHOW+5lq0z6oa7ukLDF6LmjbHxEcjDf9jXVU7k3w+yWlVtawfzJjkVQwC5EtV9ecjhhz28TzmL2cl2QD8IfC+qnphnmHHxMenJHltktcdWmZw08A0fiLxpI/nDmBTW94E/MLZU5KTk7y6LZ8GvJPl+S8Exjk2w/2/H7hjnl9+jqZF+5xzLfx9DK6hT5sdwGXtrqL1wHNDlzqnRpJfP/S6V5JzGfzbu6y/OLT5bwAerqo/mmfY4R/PSd4tsER3HMwyuIZ3b3scuuvlHwA759x18FcMfhP91AT6/KcMri++CDwN7JrbJ4M7Ze5rjwentc9JH08Grx/cDjwC/AVwSquvA77Qln8LeKAdyweAy5exv184NsDVDH7RAXgN8D/bn91vA29Y7p/zmH3+p/bn8D7gTuCNE+jxy8CTwP9rfy4vB34P+L22PQz+47oftp/zvHc+TrjPjw0dyz3Ab02gx3cxeM31/qF/Ly8+0uPpx55Ikrod85ezJEmTY4hIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG7/H6gjbhDV+rRdAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASI0lEQVR4nO3df6xcZ33n8fenSQhVQU2Cb13XttbQ9ZYNlepEd9O0oCqbLG0IqzpoWxT+KIGmMmiDBFK1u6ZI2x/aqKHdEi3abVZuk2JWLJDlx8aFsCWEVIg/knCTOk6cQDFgFFsmvuVHSISabsJ3/5jHy8jc6ztzZ+be6z7vlzSaM895zpnvfe71Z46fOXMmVYUkqS8/st4FSJLWnuEvSR0y/CWpQ4a/JHXI8JekDp273gUAbNq0qXbs2LHeZUjSWeXBBx/8u6qaW822GyL8d+zYwcLCwnqXIUlnlSRfX+22TvtIUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHNsQnfKWNZsfeT05lP0dvfu1U9iNNm0f+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUoRXDP8kLkzyQ5OEkh5P8fmt/X5KvJTnYbrtae5K8N8mRJIeSXDrrH0KSNJ5RLu/wLHBlVT2T5Dzg80k+1db9u6r6yGn9XwPsbLefB25t95KkDWLFI/8aeKY9PK/d6gyb7Abe37a7D7ggyZbJS5UkTctIc/5JzklyEDgJ3F1V97dVN7WpnVuSnN/atgJPDG1+rLVJkjaIkcK/qp6vql3ANuCyJD8LvBN4OfAvgIuA/zDOEyfZk2QhycLi4uKYZUuSJjHW2T5V9R3gXuDqqjrRpnaeBf4CuKx1Ow5sH9psW2s7fV/7qmq+qubn5uZWV70kaVVGOdtnLskFbflHgVcDXzw1j58kwLXAo22TA8Ab21k/lwNPVdWJmVQvSVqVUc722QLsT3IOgxeLO6rqE0k+m2QOCHAQeGvrfxdwDXAE+B7w5umXLUmaxIrhX1WHgEuWaL9ymf4F3Dh5aZKkWfETvpLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHVgz/JC9M8kCSh5McTvL7rf2lSe5PciTJh5O8oLWf3x4faet3zPZHkCSNa5Qj/2eBK6vq54BdwNVJLgfeDdxSVf8U+DZwQ+t/A/Dt1n5L6ydJ2kBWDP8aeKY9PK/dCrgS+Ehr3w9c25Z3t8e09VclydQqliRNbKQ5/yTnJDkInATuBr4CfKeqnmtdjgFb2/JW4AmAtv4p4CVL7HNPkoUkC4uLi5P9FJKksYwU/lX1fFXtArYBlwEvn/SJq2pfVc1X1fzc3Nyku5MkjWGss32q6jvAvcAvABckObet2gYcb8vHge0Abf2PA9+cSrWSpKkY5WyfuSQXtOUfBV4NPM7gReDXWrfrgTvb8oH2mLb+s1VV0yxakjSZc1fuwhZgf5JzGLxY3FFVn0jyGPChJP8J+Bvgttb/NuB/JDkCfAu4bgZ1S5ImsGL4V9Uh4JIl2r/KYP7/9Pa/B359KtVJkmbCT/hKUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHVox/JNsT3JvkseSHE7y9tb+e0mOJznYbtcMbfPOJEeSfCnJr8zyB5AkjW/FL3AHngN+u6oeSvJi4MEkd7d1t1TVfx7unORi4DrgFcBPAZ9J8s+q6vlpFi5JWr0Vj/yr6kRVPdSWnwYeB7aeYZPdwIeq6tmq+hpwBLhsGsVKkqZjrDn/JDuAS4D7W9PbkhxKcnuSC1vbVuCJoc2OscSLRZI9SRaSLCwuLo5duCRp9UYO/yQvAj4KvKOqvgvcCvw0sAs4AfzJOE9cVfuqar6q5ufm5sbZVJI0oZHCP8l5DIL/A1X1MYCqerKqnq+q7wN/xg+mdo4D24c239baJEkbxChn+wS4DXi8qt4z1L5lqNvrgEfb8gHguiTnJ3kpsBN4YHolS5ImNcrZPq8EfgN4JMnB1vY7wBuS7AIKOAq8BaCqDie5A3iMwZlCN3qmjyRtLCuGf1V9HsgSq+46wzY3ATdNUJckaYb8hK8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHVolMs7SFqlHXs/OZX9HL35tVPZj3SKR/6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDo3yBe7bk9yb5LEkh5O8vbVflOTuJF9u9xe29iR5b5IjSQ4luXTWP4QkaTyjHPk/B/x2VV0MXA7cmORiYC9wT1XtBO5pjwFeA+xstz3ArVOvWpI0kRXDv6pOVNVDbflp4HFgK7Ab2N+67Qeubcu7gffXwH3ABUm2TL1ySdKqjTXnn2QHcAlwP7C5qk60Vd8ANrflrcATQ5sda22n72tPkoUkC4uLi2OWLUmaxMjhn+RFwEeBd1TVd4fXVVUBNc4TV9W+qpqvqvm5ublxNpUkTWikq3omOY9B8H+gqj7Wmp9MsqWqTrRpnZOt/TiwfWjzba1NmrlpXUVT+sdulLN9AtwGPF5V7xladQC4vi1fD9w51P7GdtbP5cBTQ9NDkqQNYJQj/1cCvwE8kuRga/sd4GbgjiQ3AF8HXt/W3QVcAxwBvge8eaoVS5ImtmL4V9XngSyz+qol+hdw44R1SZJmyE/4SlKHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR1aMfyT3J7kZJJHh9p+L8nxJAfb7Zqhde9MciTJl5L8yqwKlySt3ihH/u8Drl6i/Zaq2tVudwEkuRi4DnhF2+ZPk5wzrWIlSdOxYvhX1eeAb424v93Ah6rq2ar6GnAEuGyC+iRJMzDJnP/bkhxq00IXtratwBNDfY61th+SZE+ShSQLi4uLE5QhSRrXasP/VuCngV3ACeBPxt1BVe2rqvmqmp+bm1tlGZKk1VhV+FfVk1X1fFV9H/gzfjC1cxzYPtR1W2uTJG0gqwr/JFuGHr4OOHUm0AHguiTnJ3kpsBN4YLISJUnTdu5KHZJ8ELgC2JTkGPC7wBVJdgEFHAXeAlBVh5PcATwGPAfcWFXPz6Z0SdJqrRj+VfWGJZpvO0P/m4CbJilKkjRbfsJXkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktShFb/MRdL627H3k1PZz9GbXzuV/ejs55G/JHVoxfBPcnuSk0keHWq7KMndSb7c7i9s7Uny3iRHkhxKcuksi5ckrc4oR/7vA64+rW0vcE9V7QTuaY8BXgPsbLc9wK3TKVOSNE0rhn9VfQ741mnNu4H9bXk/cO1Q+/tr4D7ggiRbplWsJGk6Vjvnv7mqTrTlbwCb2/JW4ImhfsdamyRpA5n4Dd+qKqDG3S7JniQLSRYWFxcnLUOSNIbVhv+Tp6Zz2v3J1n4c2D7Ub1tr+yFVta+q5qtqfm5ubpVlSJJWY7XhfwC4vi1fD9w51P7GdtbP5cBTQ9NDkqQNYsUPeSX5IHAFsCnJMeB3gZuBO5LcAHwdeH3rfhdwDXAE+B7w5hnULEma0IrhX1VvWGbVVUv0LeDGSYuSJM2Wn/CVpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOrTid/ieSZKjwNPA88BzVTWf5CLgw8AO4Cjw+qr69mRlSpKmaRpH/v+yqnZV1Xx7vBe4p6p2Ave0x5KkDWQW0z67gf1teT9w7QyeQ5I0gUnDv4BPJ3kwyZ7WtrmqTrTlbwCbl9owyZ4kC0kWFhcXJyxDkjSOieb8gVdV1fEkPwHcneSLwyurqpLUUhtW1T5gH8D8/PySfSRJszHRkX9VHW/3J4GPA5cBTybZAtDuT05apCRpulZ95J/kx4Afqaqn2/IvA38AHACuB25u93dOo1BJk9ux95NT2c/Rm187lf1o/Uwy7bMZ+HiSU/v5n1X1f5J8AbgjyQ3A14HXT16mJGmaVh3+VfVV4OeWaP8mcNUkRUmSZstP+EpShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOTXp5B2kqpvXhI0mj8chfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I65Cd8JY3Nr4M8+3nkL0kdMvwlqUMzm/ZJcjXwX4BzgD+vqptn9VxaP16QTTo7zST8k5wD/Dfg1cAx4AtJDlTVY7N4Po3P0NZG4HsH62dW0z6XAUeq6qtV9Q/Ah4DdM3ouSdKYZjXtsxV4YujxMeDnhzsk2QPsaQ+fTfLojGqZpk3A3613ESOwzuk6G+o8G2qEGdWZd097j2fNeP7Majdct1M9q2ofsA8gyUJVza9XLaOyzumyzuk5G2oE65y2JAur3XZW0z7Hge1Dj7e1NknSBjCr8P8CsDPJS5O8ALgOODCj55IkjWkm0z5V9VyStwF/xeBUz9ur6vAZNtk3izpmwDqnyzqn52yoEaxz2lZdZ6pqmoVIks4CfsJXkjpk+EtSh9Yl/JP8cZIvJjmU5ONJLlim39VJvpTkSJK961Dnryc5nOT7SZY97SvJ0SSPJDk4yalXqzVGnes9nhcluTvJl9v9hcv0e76N5cEka3KiwEpjk+T8JB9u6+9PsmMt6lqijpXqfFOSxaHx+611qPH2JCeX++xOBt7bfoZDSS5d6xpbHSvVeUWSp4bG8j+udY2tju1J7k3yWPt3/vYl+ow/plW15jfgl4Fz2/K7gXcv0ecc4CvAy4AXAA8DF69xnf+cwYco/hqYP0O/o8Cm9RjLUevcIOP5R8Detrx3qd97W/fMGte14tgA/xb47235OuDD6/B7HqXONwH/da1rO62GXwIuBR5dZv01wKeAAJcD92/QOq8APrGeY9nq2AJc2pZfDPztEr/3scd0XY78q+rTVfVce3gfg88BnG7dLxFRVY9X1ZfW8jlXY8Q613082/Ptb8v7gWvX+PmXM8rYDNf+EeCqJFnDGmFj/A5XVFWfA751hi67gffXwH3ABUm2rE11PzBCnRtCVZ2oqofa8tPA4wyuojBs7DHdCHP+v8ngFet0S10i4vQfeKMo4NNJHmyXrdiINsJ4bq6qE235G8DmZfq9MMlCkvuSrMULxChj8//7tAOXp4CXrEFtS9bQLPc7/Dftv/4fSbJ9ifXrbSP8LY7qF5I8nORTSV6x3sW06cZLgPtPWzX2mM7yks6fAX5yiVXvqqo7W593Ac8BH5hVHSsZpc4RvKqqjif5CeDuJF9sRxVTM6U6Z+5MdQ4/qKpKstx5xv+kjefLgM8meaSqvjLtWv+R+kvgg1X1bJK3MPjfypXrXNPZ6iEGf4vPJLkG+N/AzvUqJsmLgI8C76iq7066v5mFf1X9qzOtT/Im4F8DV1WbtDrNmlwiYqU6R9zH8XZ/MsnHGfz3fKrhP4U61308kzyZZEtVnWj/JT25zD5OjedXk/w1gyOdWYb/KGNzqs+xJOcCPw58c4Y1LWXFOqtquKY/Z/A+y0ZzVlz+ZThgq+quJH+aZFNVrfkF35KcxyD4P1BVH1uiy9hjul5n+1wN/HvgV6vqe8t0OysuEZHkx5K8+NQygzezN+IVSjfCeB4Arm/L1wM/9D+WJBcmOb8tbwJeCcz6eyBGGZvh2n8N+OwyBy2ztGKdp83z/iqD+eGN5gDwxnaGyuXAU0PTgRtGkp889b5OkssY5OVav+DTargNeLyq3rNMt/HHdJ3evT7CYH7qYLudOovip4C7TnsH+28ZHPW9ax3qfB2DubNngSeBvzq9TgZnXjzcboc3ap0bZDxfAtwDfBn4DHBRa59n8G1vAL8IPNLG8xHghjWq7YfGBvgDBgcoAC8E/lf7230AeNlaj9+Idf5h+zt8GLgXePk61PhB4ATwf9vf5Q3AW4G3tvVh8GVPX2m/42XPpFvnOt82NJb3Ab+4TnW+isH7ioeGMvOaScfUyztIUoc2wtk+kqQ1ZvhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDv0/bXE4CSsMdJkAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASvElEQVR4nO3df6zd9X3f8eerOCRTmsUmuC6zrZmoVjMyKQm6AtpEVRY2Y0gUMzVBVNNwqCevGp1SaVLnLNPQSKKFTWqWaAuTBe5MlQUYbYqX0BLXEFX7A4JJ+BEgFIeCsGXwbey4zVDpSN/743z82alzL/fce4/PPW6fD+nqfL6f7+f7Pe/v9178Ot8f50uqCkmSAH5ipQuQJE0PQ0GS1BkKkqTOUJAkdYaCJKlbtdIFvJ7zzz+/Nm3atNJlSNJZ5ZFHHvmTqlq7lGWnOhQ2bdrEwYMHV7oMSTqrJHlhqct6+kiS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUjfSN5iSrgVuBvw8U8MvAM8CdwCbgeeCaqjqRJMDngauAV4CPVdW32nq2A/+2rfbTVbV3bFsiLdGmXV9b6RK65z/7wZUuQX/DjXqk8Hng96vqHcC7gKeBXcCBqtoMHGjTAFcCm9vPTuAWgCTnATcClwKXADcmWTOm7ZAkjcGCoZDkrcAvALcBVNVfVNUPgG3AqU/6e4GrW3sbcHsNPAisTnIBcAWwv6qOV9UJYD+wdaxbI0lallGOFC4EZoHfTPLtJLcmeTOwrqqOtjEvAetaez3w4tDyh1vffP1/RZKdSQ4mOTg7O7u4rZEkLcsoobAKuBi4pareA/wf/v+pIgCqqhhca1i2qtpdVTNVNbN27ZKe/CpJWqJRQuEwcLiqHmrTdzMIiZfbaSHa67E2/wiwcWj5Da1vvn5J0pRYMBSq6iXgxSQ/27ouB54C9gHbW9924J7W3gdcl4HLgJPtNNN9wJYka9oF5i2tT5I0JUb9n+z8S+BLSc4FngOuZxAodyXZAbwAXNPG3svgdtRDDG5JvR6gqo4n+RTwcBt3U1UdH8tWSJLGYqRQqKpHgZk5Zl0+x9gCbphnPXuAPYspUJI0OX6jWZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUjRQKSZ5P8kSSR5McbH3nJdmf5Nn2uqb1J8kXkhxK8niSi4fWs72NfzbJ9jOzSZKkpVrMkcI/qKp3V9VMm94FHKiqzcCBNg1wJbC5/ewEboFBiAA3ApcClwA3ngoSSdJ0WM7po23A3tbeC1w91H97DTwIrE5yAXAFsL+qjlfVCWA/sHUZ7y9JGrNRQ6GAryd5JMnO1reuqo629kvAutZeD7w4tOzh1jdf/1+RZGeSg0kOzs7OjlieJGkcVo047n1VdSTJTwH7k3x3eGZVVZIaR0FVtRvYDTAzMzOWdUqSRjPSkUJVHWmvx4CvMLgm8HI7LUR7PdaGHwE2Di2+ofXN1y9JmhILhkKSNyd5y6k2sAX4DrAPOHUH0XbgntbeB1zX7kK6DDjZTjPdB2xJsqZdYN7S+iRJU2KU00frgK8kOTX+f1TV7yd5GLgryQ7gBeCaNv5e4CrgEPAKcD1AVR1P8ing4Tbupqo6PrYtkSQt24KhUFXPAe+ao//7wOVz9Bdwwzzr2gPsWXyZkqRJ8BvNkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqRu5FBIck6Sbyf5apu+MMlDSQ4luTPJua3/jW36UJu/aWgdn2j9zyS5YtwbI0lansUcKXwceHpo+mbgc1X1M8AJYEfr3wGcaP2fa+NIchFwLfBOYCvwxSTnLK98SdI4jRQKSTYAHwRubdMBPgDc3YbsBa5u7W1tmjb/8jZ+G3BHVb1aVX8MHAIuGcdGSJLGY9Qjhf8M/Drwl236bcAPquq1Nn0YWN/a64EXAdr8k218759jmS7JziQHkxycnZ1dxKZIkpZrwVBI8iHgWFU9MoF6qKrdVTVTVTNr166dxFtKkppVI4x5L/DhJFcBbwL+NvB5YHWSVe1oYANwpI0/AmwEDidZBbwV+P5Q/ynDy0iSpsCCRwpV9Ymq2lBVmxhcKL6/qv4J8ADwkTZsO3BPa+9r07T591dVtf5r291JFwKbgW+ObUskScs2ypHCfP41cEeSTwPfBm5r/bcBv5XkEHCcQZBQVU8muQt4CngNuKGqfrSM95ckjdmiQqGqvgF8o7WfY467h6rqz4GPzrP8Z4DPLLZISdJk+I1mSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVK3YCgkeVOSbyZ5LMmTSf59678wyUNJDiW5M8m5rf+NbfpQm79paF2faP3PJLniTG2UJGlpRjlSeBX4QFW9C3g3sDXJZcDNwOeq6meAE8CONn4HcKL1f66NI8lFwLXAO4GtwBeTnDPOjZEkLc+CoVADP2yTb2g/BXwAuLv17wWubu1tbZo2//Ikaf13VNWrVfXHwCHgkrFshSRpLEa6ppDknCSPAseA/cD3gB9U1WttyGFgfWuvB14EaPNPAm8b7p9jmeH32pnkYJKDs7Ozi98iSdKSjRQKVfWjqno3sIHBp/t3nKmCqmp3Vc1U1czatWvP1NtIkuawqLuPquoHwAPAzwGrk6xqszYAR1r7CLARoM1/K/D94f45lpEkTYFR7j5am2R1a/8t4B8BTzMIh4+0YduBe1p7X5umzb+/qqr1X9vuTroQ2Ax8c1wbIklavlULD+ECYG+7U+gngLuq6qtJngLuSPJp4NvAbW38bcBvJTkEHGdwxxFV9WSSu4CngNeAG6rqR+PdHEnSciwYClX1OPCeOfqfY467h6rqz4GPzrOuzwCfWXyZkqRJ8BvNkqTOUJAkdYaCJKkb5UKzNHabdn1tpUuQNAePFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1C0YCkk2JnkgyVNJnkzy8dZ/XpL9SZ5tr2taf5J8IcmhJI8nuXhoXdvb+GeTbD9zmyVJWopRjhReA/5VVV0EXAbckOQiYBdwoKo2AwfaNMCVwOb2sxO4BQYhAtwIXApcAtx4KkgkSdNhwVCoqqNV9a3W/jPgaWA9sA3Y24btBa5u7W3A7TXwILA6yQXAFcD+qjpeVSeA/cDWsW6NJGlZFnVNIckm4D3AQ8C6qjraZr0ErGvt9cCLQ4sdbn3z9Z/+HjuTHExycHZ2djHlSZKWaeRQSPKTwG8Dv1ZVfzo8r6oKqHEUVFW7q2qmqmbWrl07jlVKkkY0UigkeQODQPhSVf1O6365nRaivR5r/UeAjUOLb2h98/VLkqbEKHcfBbgNeLqqfmNo1j7g1B1E24F7hvqva3chXQacbKeZ7gO2JFnTLjBvaX2SpCmxaoQx7wX+KfBEkkdb378BPgvclWQH8AJwTZt3L3AVcAh4BbgeoKqOJ/kU8HAbd1NVHR/LVkiSxmLBUKiq/w1kntmXzzG+gBvmWdceYM9iCpQkTY7faJYkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdQuGQpI9SY4l+c5Q33lJ9id5tr2uaf1J8oUkh5I8nuTioWW2t/HPJtl+ZjZHkrQcoxwp/Hdg62l9u4ADVbUZONCmAa4ENrefncAtMAgR4EbgUuAS4MZTQSJJmh4LhkJV/SFw/LTubcDe1t4LXD3Uf3sNPAisTnIBcAWwv6qOV9UJYD8/HjSSpBW21GsK66rqaGu/BKxr7fXAi0PjDre++fp/TJKdSQ4mOTg7O7vE8iRJS7HsC81VVUCNoZZT69tdVTNVNbN27dpxrVaSNIKlhsLL7bQQ7fVY6z8CbBwat6H1zdcvSZoiSw2FfcCpO4i2A/cM9V/X7kK6DDjZTjPdB2xJsqZdYN7S+iRJU2TVQgOSfBl4P3B+ksMM7iL6LHBXkh3AC8A1bfi9wFXAIeAV4HqAqjqe5FPAw23cTVV1+sVrSdIKWzAUquqX5pl1+RxjC7hhnvXsAfYsqjpJ0kT5jWZJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSt+A3mvXXx6ZdX1vpEiRNOY8UJEmdoSBJ6gwFSVJnKEiSOi80S1Nkmm4GeP6zH1zpErQCPFKQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdX6j+Qybpm+oStJCJn6kkGRrkmeSHEqya9LvL0ma30RDIck5wH8FrgQuAn4pyUWTrEGSNL9Jnz66BDhUVc8BJLkD2AY8NdfgJ46c9PSLtEKm6b89H843OZMOhfXAi0PTh4FLhwck2QnsbJOvvnDzh74zodqW43zgT1a6iBFY53hZ5/i8bo25eYKVvL6zYV8C/OxSF5y6C81VtRvYDZDkYFXNrHBJC7LO8bLO8Tob6jwbaoSzq86lLjvpC81HgI1D0xtanyRpCkw6FB4GNie5MMm5wLXAvgnXIEmax0RPH1XVa0l+FbgPOAfYU1VPvs4iuydT2bJZ53hZ53idDXWeDTXC34A6U1XjLESSdBbzMReSpM5QkCR1UxUKSf5Tku8meTzJV5Ksnmfcij4qI8lHkzyZ5C+TzHt7WpLnkzyR5NHl3CK2VIuoc6X353lJ9id5tr2umWfcj9q+fDTJRG5QWGjfJHljkjvb/IeSbJpEXXPUsVCdH0syO7T//tkK1bknybEkc37/KANfaNvxeJKLp7DG9yc5ObQv/92ka2x1bEzyQJKn2n/nH59jzOL3Z1VNzQ+wBVjV2jcDN88x5hzge8DbgXOBx4CLJlzn32Pw5ZBvADOvM+554PwV3J8L1jkl+/M/Artae9dcv/c274cTrmvBfQP8C+C/tfa1wJ0r8Hsepc6PAf9l0rXNUesvABcD35ln/lXA7wEBLgMemsIa3w98dQr25QXAxa39FuCP5vi9L3p/TtWRQlV9vapea5MPMvgew+n6ozKq6i+AU4/KmJiqerqqnpnkey7FiHWu+P5s77e3tfcCV0/4/eczyr4Zrv1u4PIkmWCNMB2/w5FU1R8Cx19nyDbg9hp4EFid5ILJVDcwQo1ToaqOVtW3WvvPgKcZPDVi2KL351SFwml+mUHCnW6uR2WcviOmRQFfT/JIe3zHNJqG/bmuqo629kvAunnGvSnJwSQPJplEcIyyb/qY9oHmJPC2CdQ2Zw3NfL/DX2ynEO5OsnGO+dNgGv4eR/FzSR5L8ntJ3rnSxbTTlu8BHjpt1qL358Qfc5HkD4CfnmPWJ6vqnjbmk8BrwJcmWduwUeocwfuq6kiSnwL2J/lu+xQyNmOq84x7vTqHJ6qqksx3n/Tfbfvz7cD9SZ6oqu+Nu9a/pv4X8OWqejXJP2dwdPOBFa7pbPUtBn+LP0xyFfC7wOaVKibJTwK/DfxaVf3pctc38VCoqn/4evOTfAz4EHB5tZNip5nIozIWqnPEdRxpr8eSfIXBYf5YQ2EMda74/kzycpILqupoO7Q9Ns86Tu3P55J8g8EnozMZCqPsm1NjDidZBbwV+P4ZrGkuC9ZZVcM13crgOs40mvpH4Qz/w1tV9yb5YpLzq2riD8pL8gYGgfClqvqdOYYsen9O1emjJFuBXwc+XFWvzDPsrHhURpI3J3nLqTaDi+jT+MTXadif+4Dtrb0d+LEjnCRrkryxtc8H3ss8j1wfo1H2zXDtHwHun+fDzJm0YJ2nnUf+MIPzz9NoH3Bdu2vmMuDk0KnFqZDkp09dN0pyCYN/Ryf9QYBWw23A01X1G/MMW/z+XOkr6KddKT/E4PzXo+3n1F0dfwe497Qr6n/E4FPiJ1egzn/M4Nzcq8DLwH2n18ngTpDH2s+T01rnlOzPtwEHgGeBPwDOa/0zwK2t/fPAE21/PgHsmFBtP7ZvgJsYfHABeBPwP9vf7jeBt096/41Y539of4ePAQ8A71ihOr8MHAX+b/vb3AH8CvArbX4Y/I+4vtd+z/Pe3beCNf7q0L58EPj5FdqX72Nw3fLxoX8zr1ru/vQxF5KkbqpOH0mSVpahIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdf8P8t61SqIAPjcAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATmUlEQVR4nO3df5BdZ33f8fensg1T8AQZLeBakmVaT4MpwXZ3BAmeYhoQwkktMkmnctNgp2bUpLhN2k47oszYHfNHIcwkHYqJ0YDG0CE2DeBEaeTYSoC6LRXR2pVtbGMsFLeWxo0URA3UjF2Zb/+4R+31enfv1e7Zvas879fMnT3neZ5z7nePVvvZ8+Oek6pCktSuvzDpAiRJk2UQSFLjDAJJapxBIEmNMwgkqXFnTbqAuaxbt642bdo06TIk6Yxx3333/VlVTS1m2VUZBJs2bWJmZmbSZUjSGSPJf1/ssh4akqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0bGQRJNiT5cpJHkjyc5FfmGJMkH01yKMmDSS4f6rs2yePd69q+vwFJ0tKM8zmCk8A/q6r7k5wL3JdkX1U9MjTmXcDF3etNwG8Cb0pyHnATMA1Ut+yeqvpOr9+FJGnRRu4RVNVTVXV/N/094FHgglnDtgGfqYH9wCuSnA+8E9hXVSe6X/77gK29fgeSpCU5rU8WJ9kEXAZ8bVbXBcCTQ/NHurb52uda9w5gB8DGjRtPpyydwTbt/P2xxj3xoZ/yvaVlMvbJ4iQvB74A/GpVfbfvQqpqV1VNV9X01NSibpchSVqEsYIgydkMQuCzVfXFOYYcBTYMza/v2uZrlyStEuNcNRTgU8CjVfXr8wzbA7ynu3rozcDTVfUUcDewJcnaJGuBLV2bJGmVGOccwVuAXwAeSnKwa/uXwEaAqroV2AtcBRwCngF+ses7keSDwIFuuZur6kR/5UuSlmpkEFTVfwYyYkwB75unbzewe1HVSZKWnZ8slqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1buSDaZLsBn4aOFZVf22O/n8O/PzQ+l4HTHVPJ3sC+B7wPHCyqqb7KlyS1I9x9ghuA7bO11lVH6mqS6vqUuD9wH+c9TjKt3X9hoAkrUIjg6Cq7gXGfc7wNcDtS6pIkrSiejtHkOQvMthz+MJQcwH3JLkvyY6+3kuS1J+R5whOw98C/susw0JXVNXRJK8C9iX5RreH8SJdUOwA2LhxY49lSZIW0udVQ9uZdVioqo52X48BdwKb51u4qnZV1XRVTU9NTfVYliRpIb0EQZIfAd4K/O5Q28uSnHtqGtgCfL2P95Mk9Wecy0dvB64E1iU5AtwEnA1QVbd2w34GuKeq/vfQoq8G7kxy6n1+q6r+oL/SJUl9GBkEVXXNGGNuY3CZ6XDbYeCNiy1MkrQy/GSxJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNW5kECTZneRYkjmfN5zkyiRPJznYvW4c6tua5LEkh5Ls7LNwSVI/xtkjuA3YOmLMf6qqS7vXzQBJ1gC3AO8CLgGuSXLJUoqVJPVvZBBU1b3AiUWsezNwqKoOV9VzwB3AtkWsR5K0jPo6R/DjSR5IcleS13dtFwBPDo050rXNKcmOJDNJZo4fP95TWZKkUfoIgvuBC6vqjcC/BX5nMSupql1VNV1V01NTUz2UJUkax5KDoKq+W1Xf76b3AmcnWQccBTYMDV3ftUmSVpElB0GS1yRJN725W+e3gQPAxUkuSnIOsB3Ys9T3kyT166xRA5LcDlwJrEtyBLgJOBugqm4Ffg745SQngR8A26uqgJNJbgDuBtYAu6vq4WX5LiRJizYyCKrqmhH9HwM+Nk/fXmDv4kqTJK0EP1ksSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjRsZBEl2JzmW5Ovz9P98kgeTPJTkq0neONT3RNd+MMlMn4VLkvoxzh7BbcDWBfr/BHhrVb0B+CCwa1b/26rq0qqaXlyJkqTlNM4zi+9NsmmB/q8Oze4H1i+9LEnSSun7HMH1wF1D8wXck+S+JDsWWjDJjiQzSWaOHz/ec1mSpPmM3CMYV5K3MQiCK4aar6iqo0leBexL8o2quneu5atqF91hpenp6eqrLknSwnrZI0jyY8AngW1V9e1T7VV1tPt6DLgT2NzH+0mS+rPkIEiyEfgi8AtV9c2h9pclOffUNLAFmPPKI0nS5Iw8NJTkduBKYF2SI8BNwNkAVXUrcCPwSuDjSQBOdlcIvRq4s2s7C/itqvqDZfgeJElLMM5VQ9eM6H8v8N452g8Db3zxEpKk1cRPFktS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjxgqCJLuTHEsy5zOHM/DRJIeSPJjk8qG+a5M83r2u7atwSVI/xt0juA3YukD/u4CLu9cO4DcBkpzH4BnHbwI2AzclWbvYYiVJ/RsrCKrqXuDEAkO2AZ+pgf3AK5KcD7wT2FdVJ6rqO8A+Fg4USdIKG/nw+jFdADw5NH+ka5uv/UWS7GCwN8HGjRt7KkuTsmnn70+6hBW3HN/zcqzziQ/9VO/r1Jlt1ZwsrqpdVTVdVdNTU1OTLkeSmtFXEBwFNgzNr+/a5muXJK0SfQXBHuA93dVDbwaerqqngLuBLUnWdieJt3RtkqRVYqxzBEluB64E1iU5wuBKoLMBqupWYC9wFXAIeAb4xa7vRJIPAge6Vd1cVQuddJYkrbCxgqCqrhnRX8D75unbDew+/dIkSSth1ZwsliRNhkEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrcWEGQZGuSx5IcSrJzjv7fSHKwe30zyf8a6nt+qG9Pn8VLkpZu5KMqk6wBbgHeARwBDiTZU1WPnBpTVf9kaPw/Ai4bWsUPqurS/kqWJPVpnD2CzcChqjpcVc8BdwDbFhh/DXB7H8VJkpbfOEFwAfDk0PyRru1FklwIXAR8aaj5pUlmkuxP8u753iTJjm7czPHjx8coS5LUh75PFm8HPl9Vzw+1XVhV08DfBf5Nkr8814JVtauqpqtqempqqueyJEnzGScIjgIbhubXd21z2c6sw0JVdbT7ehj4Ci88fyBJmrBxguAAcHGSi5Kcw+CX/Yuu/knyo8Ba4L8Ota1N8pJueh3wFuCR2ctKkiZn5FVDVXUyyQ3A3cAaYHdVPZzkZmCmqk6FwnbgjqqqocVfB3wiyQ8ZhM6Hhq82kiRN3sggAKiqvcDeWW03zpr/V3Ms91XgDUuoT5K0zPxksSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDVurCBIsjXJY0kOJdk5R/91SY4nOdi93jvUd22Sx7vXtX0WL0laupGPqkyyBrgFeAdwBDiQZM8czx7+XFXdMGvZ84CbgGmggPu6Zb/TS/WSpCUbZ49gM3Coqg5X1XPAHcC2Mdf/TmBfVZ3ofvnvA7YurlRJ0nIYJwguAJ4cmj/Stc32s0keTPL5JBtOc1mS7Egyk2Tm+PHjY5QlSepDXyeLfw/YVFU/xuCv/k+f7gqqaldVTVfV9NTUVE9lSZJGGScIjgIbhubXd23/T1V9u6qe7WY/Cfz1cZeVJE3WOEFwALg4yUVJzgG2A3uGByQ5f2j2auDRbvpuYEuStUnWAlu6NknSKjHyqqGqOpnkBga/wNcAu6vq4SQ3AzNVtQf4x0muBk4CJ4DrumVPJPkggzABuLmqTizD9yFJWqSRQQBQVXuBvbPabhyafj/w/nmW3Q3sXkKNkqRl5CeLJalxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXFjBUGSrUkeS3Ioyc45+v9pkkeSPJjkj5JcONT3fJKD3WvP7GUlSZM18lGVSdYAtwDvAI4AB5LsqapHhob9N2C6qp5J8svArwF/p+v7QVVd2nPdkqSejLNHsBk4VFWHq+o54A5g2/CAqvpyVT3Tze4H1vdbpiRpuYwTBBcATw7NH+na5nM9cNfQ/EuTzCTZn+Td8y2UZEc3bub48eNjlCVJ6sPIQ0OnI8nfA6aBtw41X1hVR5O8FvhSkoeq6luzl62qXcAugOnp6eqzLknS/MbZIzgKbBiaX9+1vUCStwMfAK6uqmdPtVfV0e7rYeArwGVLqFeS1LNxguAAcHGSi5KcA2wHXnD1T5LLgE8wCIFjQ+1rk7ykm14HvAUYPsksSZqwkYeGqupkkhuAu4E1wO6qejjJzcBMVe0BPgK8HPjtJAD/o6quBl4HfCLJDxmEzodmXW0kSZqwsc4RVNVeYO+sthuHpt8+z3JfBd6wlAIlScvLTxZLUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS48YKgiRbkzyW5FCSnXP0vyTJ57r+ryXZNNT3/q79sSTv7K90SVIfRgZBkjXALcC7gEuAa5JcMmvY9cB3quqvAL8BfLhb9hIGD7t/PbAV+Hi3PknSKjHOHsFm4FBVHa6q54A7gG2zxmwDPt1Nfx74yQyeYr8NuKOqnq2qPwEOdeuTJK0S4zy8/gLgyaH5I8Cb5htTVSeTPA28smvfP2vZC+Z6kyQ7gB3d7LNJvj5GbZO0DvizSRcxhj8XdebDK1jJwu99xm/PSW7LOZzx23MV+auLXXCcIFgRVbUL2AWQZKaqpidc0oLOhBrBOvtmnf2yzv4kmVnssuMcGjoKbBiaX9+1zTkmyVnAjwDfHnNZSdIEjRMEB4CLk1yU5BwGJ3/3zBqzB7i2m/454EtVVV379u6qoouAi4E/7qd0SVIfRh4a6o753wDcDawBdlfVw0luBmaqag/wKeDfJTkEnGAQFnTj/j3wCHASeF9VPT9GXbsW9+2sqDOhRrDOvllnv6yzP4uuMYM/3CVJrfKTxZLUOINAkhq3KoIgyUeSfCPJg0nuTPKKecYteKuLZa7xbyd5OMkPk8x7GVmSJ5I8lOTgUi7nWqzTqHNi27J7//OS7EvyePd17Tzjnu+25cEksy9SWM76Fn1blZU0Rp3XJTk+tA3fO4Eadyc5Nt9ngzLw0e57eDDJ5StdY1fHqDqvTPL00La8cQI1bkjy5SSPdP/Pf2WOMae/Patq4i9gC3BWN/1h4MNzjFkDfAt4LXAO8ABwyQrW+DoGH9j4CjC9wLgngHUT3JYj65z0tuxq+DVgZze9c65/867v+xPYhiO3D/APgVu76e3A51ZpndcBH1vp2mbV8DeAy4Gvz9N/FXAXEODNwNdWaZ1XAv9hwtvyfODybvpc4Jtz/Juf9vZcFXsEVXVPVZ3sZvcz+LzBbOPc6mI5a3y0qh5bqfdbrDHrnOi27AzfluTTwLtX+P0XspTbqqyk1fDvOFJV3cvgasL5bAM+UwP7gVckOX9lqvv/xqhz4qrqqaq6v5v+HvAoL75bw2lvz1URBLP8fQZpNttct7qY83YVE1bAPUnu626bsRqthm356qp6qpv+n8Cr5xn30iQzSfYnWamwGGf7vOC2KsCp26qspHH/HX+2O0Tw+SQb5uiftNXw8ziuH0/yQJK7krx+koV0hyMvA742q+u0t+eK3WIiyR8Cr5mj6wNV9bvdmA8w+LzBZ1eqrmHj1DiGK6rqaJJXAfuSfKP7S6M3PdW57Baqc3imqirJfNcxX9htz9cCX0ryUFV9q+9a/xz7PeD2qno2yT9gsBfzNydc05nqfgY/j99PchXwOww+JLvikrwc+ALwq1X13aWub8WCoKrevlB/kuuAnwZ+sroDXbMs++0qRtU45jqOdl+PJbmTwe57r0HQQ50rcuuPhepM8qdJzq+qp7rd1mPzrOPU9jyc5CsM/gJa7iA4nduqHMkLb6uykkbWWVXDNX2SwbmZ1eaMuBXN8C/cqtqb5ONJ1lXVit6MLsnZDELgs1X1xTmGnPb2XBWHhpJsBf4FcHVVPTPPsHFudTFRSV6W5NxT0wxOgq/Gu6iuhm05fFuSa4EX7ckkWZvkJd30OuAtDD6lvtyWcluVlTSyzlnHhq9mcEx5tdkDvKe72uXNwNNDhw1XjSSvOXUeKMlmBr8/VzT8u/f/FPBoVf36PMNOf3tO8gz40FnuQwyOaR3sXqeuxvhLwN5ZZ8O/yeAvwg+scI0/w+BY27PAnwJ3z66RwdUbD3Svh1e6xnHrnPS27N7/lcAfAY8Dfwic17VPA5/spn8CeKjbng8B169gfS/aPsDNDP5YAXgp8Nvdz+4fA69d6W04Zp3/uvtZfAD4MvCjE6jxduAp4P90P5vXA78E/FLXHwYPv/pW9+8871V5E67zhqFtuR/4iQnUeAWD85APDv2+vGqp29NbTEhS41bFoSFJ0uQYBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlx/xfT4C8DfnCGQAAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "XjoiV2tizDVS"
|
||
},
|
||
"source": [
|
||
"### Weight distribution per layer - Model with dropout"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "-lgB3eu2HAKI",
|
||
"outputId": "5085602e-7e76-4840-ca71-8736c87216a3",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
}
|
||
},
|
||
"source": [
|
||
"for par in model.parameters():\n",
|
||
" plt.hist(par.cpu().detach().numpy().flatten())\n",
|
||
" plt.xlim(-2,2)\n",
|
||
" plt.show()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": [
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUzklEQVR4nO3df6zldZ3f8edrGVHiisOP2VnKYAezk7VoouIExtVsrLTDgBuHpmowTRnt1OkGbNxsk92xJiXFmkKbrF1SZUNk6tBYkbJrmbrgOAuYTf8Y5KL8ENDlykKYCTCzDMJas1jcd/84n3GP13PvPfPhzj3n6vORnNzv9/39fM/nfb/3wut+v+d7zqSqkCSpxy9NugFJ0spliEiSuhkikqRuhogkqZshIknqtmrSDSy1008/vdavXz/pNiRpRbn33nv/qqrWHOt+P3chsn79emZmZibdhiStKEme6NnPy1mSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkbj9371iXXo71O/900i0s6PGr3zPpFqSf4pmIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6jZWiCRZneSWJN9J8kiStyc5Ncm+JI+2r6e0sUlybZLZJA8kOXfoeba18Y8m2TZUf1uSB9s+1yZJq4+cQ5I0HcY9E/lD4KtV9QbgzcAjwE7gjqraANzR1gEuAja0xw7gOhgEAnAlcD5wHnDlUChcB3xkaL8trT7fHJKkKbBoiCR5LfCbwA0AVfWjqvo+sBXY3YbtBi5py1uBG2tgP7A6yRnAhcC+qjpSVc8B+4AtbdvJVbW/qgq4cc5zjZpDkjQFxjkTORs4DPy3JN9K8rkkrwbWVtVTbczTwNq2fCbw5ND+B1ptofqBEXUWmOOnJNmRZCbJzOHDh8f4liRJS2GcEFkFnAtcV1VvBf4vcy4rtTOIWvr2xpujqq6vqo1VtXHNmjXHsw1J0pBxQuQAcKCq7m7rtzAIlWfapSja10Nt+0HgrKH917XaQvV1I+osMIckaQosGiJV9TTwZJJfb6ULgIeBPcDRO6y2Abe25T3AZe0urU3A8+2S1F5gc5JT2gvqm4G9bdsLSTa1u7Ium/Nco+aQJE2BVWOO+9fAF5KcCDwGfJhBAN2cZDvwBPCBNvY24GJgFvhhG0tVHUnySeCeNu6qqjrSli8HPg+cBNzeHgBXzzOHJGkKjBUiVXUfsHHEpgtGjC3ginmeZxewa0R9BnjTiPqzo+aQJE0H37EuSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6jRUiSR5P8mCS+5LMtNqpSfYlebR9PaXVk+TaJLNJHkhy7tDzbGvjH02ybaj+tvb8s23fLDSHJGk6HMuZyD+sqrdU1ca2vhO4o6o2AHe0dYCLgA3tsQO4DgaBAFwJnA+cB1w5FArXAR8Z2m/LInNIkqbAy7mctRXY3ZZ3A5cM1W+sgf3A6iRnABcC+6rqSFU9B+wDtrRtJ1fV/qoq4MY5zzVqDknSFBg3RAr4WpJ7k+xotbVV9VRbfhpY25bPBJ4c2vdAqy1UPzCivtAckqQpsGrMce+sqoNJfgXYl+Q7wxurqpLU0rc33hwt2HYAvO51rzuebUiShox1JlJVB9vXQ8CXGbym8Uy7FEX7eqgNPwicNbT7ulZbqL5uRJ0F5pjb3/VVtbGqNq5Zs2acb0mStAQWDZEkr07ymqPLwGbg28Ae4OgdVtuAW9vyHuCydpfWJuD5dklqL7A5ySntBfXNwN627YUkm9pdWZfNea5Rc0iSpsA4l7PWAl9ud92uAv5HVX01yT3AzUm2A08AH2jjbwMuBmaBHwIfBqiqI0k+CdzTxl1VVUfa8uXA54GTgNvbA+DqeeaQJE2BRUOkqh4D3jyi/ixwwYh6AVfM81y7gF0j6jPAm8adQ5I0HXzHuiSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6jR0iSU5I8q0kX2nrZye5O8lski8lObHVX9nWZ9v29UPP8fFW/26SC4fqW1ptNsnOofrIOSRJ0+FYzkQ+BjwytH4N8Omq+jXgOWB7q28Hnmv1T7dxJDkHuBR4I7AF+GwLphOAzwAXAecAH2xjF5pDkjQFxgqRJOuA9wCfa+sB3g3c0obsBi5py1vbOm37BW38VuCmqnqxqv4SmAXOa4/Zqnqsqn4E3ARsXWQOSdIUGPdM5L8Avwf8bVs/Dfh+Vb3U1g8AZ7blM4EnAdr259v4n9Tn7DNffaE5fkqSHUlmkswcPnx4zG9JkvRyLRoiSX4LOFRV9y5DP12q6vqq2lhVG9esWTPpdiTpF8aqMca8A3hvkouBVwEnA38IrE6yqp0prAMOtvEHgbOAA0lWAa8Fnh2qHzW8z6j6swvMIUmaAoueiVTVx6tqXVWtZ/DC+J1V9c+Au4D3tWHbgFvb8p62Ttt+Z1VVq1/a7t46G9gAfAO4B9jQ7sQ6sc2xp+0z3xySpCnwct4n8vvA7yaZZfD6xQ2tfgNwWqv/LrAToKoeAm4GHga+ClxRVT9uZxkfBfYyuPvr5jZ2oTkkSVNgnMtZP1FVXwe+3pYfY3Bn1dwxfwO8f579PwV8akT9NuC2EfWRc0iSpoPvWJckdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0WDZEkr0ryjST3J3koyb9v9bOT3J1kNsmXkpzY6q9s67Nt+/qh5/p4q383yYVD9S2tNptk51B95BySpOkwzpnIi8C7q+rNwFuALUk2AdcAn66qXwOeA7a38duB51r9020cSc4BLgXeCGwBPpvkhCQnAJ8BLgLOAT7YxrLAHJKkKbBoiNTAD9rqK9qjgHcDt7T6buCStry1rdO2X5AkrX5TVb1YVX8JzALntcdsVT1WVT8CbgK2tn3mm0OSNAXGek2knTHcBxwC9gHfA75fVS+1IQeAM9vymcCTAG3788Bpw/U5+8xXP22BOeb2tyPJTJKZw4cPj/MtSZKWwFghUlU/rqq3AOsYnDm84bh2dYyq6vqq2lhVG9esWTPpdiTpF8Yx3Z1VVd8H7gLeDqxOsqptWgccbMsHgbMA2vbXAs8O1+fsM1/92QXmkCRNgXHuzlqTZHVbPgn4x8AjDMLkfW3YNuDWtrynrdO231lV1eqXtru3zgY2AN8A7gE2tDuxTmTw4vuets98c0iSpsCqxYdwBrC73UX1S8DNVfWVJA8DNyX5D8C3gBva+BuA/55kFjjCIBSoqoeS3Aw8DLwEXFFVPwZI8lFgL3ACsKuqHmrP9fvzzCFJmgKLhkhVPQC8dUT9MQavj8yt/w3w/nme61PAp0bUbwNuG3cOSdJ08B3rkqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSeq2aIgkOSvJXUkeTvJQko+1+qlJ9iV5tH09pdWT5Noks0keSHLu0HNta+MfTbJtqP62JA+2fa5NkoXmkCRNh3HORF4C/k1VnQNsAq5Icg6wE7ijqjYAd7R1gIuADe2xA7gOBoEAXAmcD5wHXDkUCtcBHxnab0urzzeHJGkKLBoiVfVUVX2zLf818AhwJrAV2N2G7QYuactbgRtrYD+wOskZwIXAvqo6UlXPAfuALW3byVW1v6oKuHHOc42aQ5I0BY7pNZEk64G3AncDa6vqqbbpaWBtWz4TeHJotwOttlD9wIg6C8wxt68dSWaSzBw+fPhYviVJ0sswdogk+WXgj4HfqaoXhre1M4ha4t5+ykJzVNX1VbWxqjauWbPmeLYhSRoyVogkeQWDAPlCVf1JKz/TLkXRvh5q9YPAWUO7r2u1herrRtQXmkOSNAXGuTsrwA3AI1X1B0Ob9gBH77DaBtw6VL+s3aW1CXi+XZLaC2xOckp7QX0zsLdteyHJpjbXZXOea9QckqQpsGqMMe8A/jnwYJL7Wu3fAlcDNyfZDjwBfKBtuw24GJgFfgh8GKCqjiT5JHBPG3dVVR1py5cDnwdOAm5vDxaYQ5I0BRYNkar6P0Dm2XzBiPEFXDHPc+0Cdo2ozwBvGlF/dtQckqTp4DvWJUndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSt0VDJMmuJIeSfHuodmqSfUkebV9PafUkuTbJbJIHkpw7tM+2Nv7RJNuG6m9L8mDb59okWWgOSdL0GOdM5PPAljm1ncAdVbUBuKOtA1wEbGiPHcB1MAgE4ErgfOA84MqhULgO+MjQflsWmUOSNCUWDZGq+nPgyJzyVmB3W94NXDJUv7EG9gOrk5wBXAjsq6ojVfUcsA/Y0radXFX7q6qAG+c816g5JElTovc1kbVV9VRbfhpY25bPBJ4cGneg1RaqHxhRX2iOn5FkR5KZJDOHDx/u+HYkST1e9gvr7QyilqCX7jmq6vqq2lhVG9esWXM8W5EkDekNkWfapSja10OtfhA4a2jculZbqL5uRH2hOSRJU6I3RPYAR++w2gbcOlS/rN2ltQl4vl2S2gtsTnJKe0F9M7C3bXshyaZ2V9Zlc55r1BySpCmxarEBSb4IvAs4PckBBndZXQ3cnGQ78ATwgTb8NuBiYBb4IfBhgKo6kuSTwD1t3FVVdfTF+ssZ3AF2EnB7e7DAHJKkKbFoiFTVB+fZdMGIsQVcMc/z7AJ2jajPAG8aUX921BySpOnhO9YlSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUbdH3iUhLaf3OP510CyvaSjh+j1/9nkm3oGXkmYgkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkrpNfYgk2ZLku0lmk+ycdD+SpL8z1SGS5ATgM8BFwDnAB5OcM9muJElHTfu/bHgeMFtVjwEkuQnYCjw80a6m2Er4l+/0823afwf9lxeX1rSHyJnAk0PrB4Dz5w5KsgPY0VZfTPLtZejt5Tod+KtJNzGGldDnSugR7HOpdfWZa45DJwtbKcfz13t2mvYQGUtVXQ9cD5Bkpqo2TrilRdnn0lkJPYJ9LjX7XFpJZnr2m+rXRICDwFlD6+taTZI0BaY9RO4BNiQ5O8mJwKXAngn3JElqpvpyVlW9lOSjwF7gBGBXVT20yG7XH//OloR9Lp2V0CPY51Kzz6XV1WeqaqkbkST9gpj2y1mSpClmiEiSuq34EEnyn5N8J8kDSb6cZPU84yb68SlJ3p/koSR/m2Te2/2SPJ7kwST39d5y93IcQ58TO55JTk2yL8mj7esp84z7cTuO9yVZthsyFjs2SV6Z5Ett+91J1i9Xb3P6WKzPDyU5PHQM/+UEetyV5NB87/3KwLXte3ggybnL3WPrY7E+35Xk+aFj+e8m0ONZSe5K8nD7b/xjI8Yc+/GsqhX9ADYDq9ryNcA1I8acAHwPeD1wInA/cM4y9/kPGLyZ5+vAxgXGPQ6cPsHjuWifkz6ewH8CdrblnaN+5m3bDyZw/BY9NsDlwB+15UuBL01pnx8C/uty9zanh98EzgW+Pc/2i4HbgQCbgLuntM93AV+Z8LE8Azi3Lb8G+IsRP/NjPp4r/kykqr5WVS+11f0M3ksy108+PqWqfgQc/fiUZVNVj1TVd5dzzh5j9jnp47kV2N2WdwOXLOPcixnn2Az3fwtwQZIsY48w+Z/hWKrqz4EjCwzZCtxYA/uB1UnOWJ7u/s4YfU5cVT1VVd9sy38NPMLgU0GGHfPxXPEhMse/YJCic436+JS5B29aFPC1JPe2j3OZRpM+nmur6qm2/DSwdp5xr0oyk2R/kuUKmnGOzU/GtD+AngdOW5buRvTQzPcz/KftssYtSc4asX3SJv27eCzenuT+JLcneeMkG2mXUN8K3D1n0zEfz6l+n8hRSf4M+NURmz5RVbe2MZ8AXgK+sJy9DRunzzG8s6oOJvkVYF+S77S/cpbMEvV5XC3U4/BKVVWS+e5T//vtWL4euDPJg1X1vaXu9efY/wa+WFUvJvlXDM6e3j3hnlaqbzL4ffxBkouB/wVsmEQjSX4Z+GPgd6rqhZf7fCsiRKrqHy20PcmHgN8CLqh2YW+OZfn4lMX6HPM5Dravh5J8mcFlhyUNkSXo87gfz4V6TPJMkjOq6ql2qn1onuc4eiwfS/J1Bn95He8QGefYHB1zIMkq4LXAs8e5r7kW7bOqhnv6HIPXoqbNivhopOH/WVfVbUk+m+T0qlrWD2ZM8goGAfKFqvqTEUOO+Xiu+MtZSbYAvwe8t6p+OM+wFfHxKUleneQ1R5cZ3DQwjZ9IPOnjuQfY1pa3AT9z9pTklCSvbMunA+9gef4JgXGOzXD/7wPunOePn+Np0T7nXAt/L4Nr6NNmD3BZu6toE/D80KXOqZHkV4++7pXkPAb/713WPxza/DcAj1TVH8wz7NiP5yTvFliiOw5mGVzDu689jt718veA2+bcdfAXDP4S/cQE+vwnDK4vvgg8A+yd2yeDO2Xub4+HprXPSR9PBq8f3AE8CvwZcGqrbwQ+15Z/A3iwHcsHge3L2N/PHBvgKgZ/6AC8Cvif7Xf3G8Drl/vnPGaf/7H9Ht4P3AW8YQI9fhF4Cvh/7fdyO/DbwG+37WHwD9d9r/2c573zccJ9fnToWO4HfmMCPb6TwWuuDwz9//Lil3s8/dgTSVK3FX85S5I0OYaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSer2/wFHRl+juOJtgwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASG0lEQVR4nO3df6zdd33f8edrSQhVQU2Cb13XNjN0XlmYVCe6S9OCpixZ25BMddBaFP4ohmYyaEECqdpmirS226KFbSUS2prJbTLMRIGMH4sLYSWEVIg/kvQmc5w4gWLAKLZMfMuPQISWLeG9P87H5cjc63vOPefce83n+ZCOzvd8vp/v97zP516/zvd+zvd8napCktSXv7XeBUiS1p7hL0kdMvwlqUOGvyR1yPCXpA6dv94FAGzatKl27Nix3mVI0jnl4Ycf/uuqmlvNthsi/Hfs2MHCwsJ6lyFJ55QkX1/ttk77SFKHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjq0YvgneXGSh5I8muRIkj9o7e9P8rUkh9ptV2tPkvclOZrkcJLLZ/0iJEnjGeUbvs8BV1fVs0kuAL6Q5NNt3b+oqo+e0f91wM52+0Xg9nYvbQg79n1qqvs7duv1U92ftBZWPPKvgWfbwwva7Wz//ddu4ANtuweAi5JsmbxUSdK0jDTnn+S8JIeAU8C9VfVgW3VLm9q5LcmFrW0r8NTQ5sdbmyRpgxgp/KvqharaBWwDrkjy94F3Aa8C/gFwCfCvxnniJHuTLCRZWFxcHLNsSdIkxjrbp6q+A9wPXFtVJ9vUznPAfwOuaN1OANuHNtvW2s7c1/6qmq+q+bm5VV2RVJK0SqOc7TOX5KK2/BPArwBfPD2PnyTADcDjbZODwJvaWT9XAs9U1cmZVC9JWpVRzvbZAhxIch6DN4u7quqTST6XZA4IcAh4W+t/D3AdcBT4PvCW6ZctSZrEiuFfVYeBy5Zov3qZ/gXcPHlpkqRZ8Ru+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR1aMfyTvDjJQ0keTXIkyR+09lckeTDJ0SQfSfKi1n5he3y0rd8x25cgSRrXKEf+zwFXV9UvALuAa5NcCbwHuK2q/g7wbeCm1v8m4Nut/bbWT5K0gawY/jXwbHt4QbsVcDXw0dZ+ALihLe9uj2nrr0mSqVUsSZrYSHP+Sc5Lcgg4BdwLfAX4TlU937ocB7a25a3AUwBt/TPAy5bY594kC0kWFhcXJ3sVkqSxjBT+VfVCVe0CtgFXAK+a9Imran9VzVfV/Nzc3KS7kySNYayzfarqO8D9wC8BFyU5v63aBpxoyyeA7QBt/U8B35xKtZKkqRjlbJ+5JBe15Z8AfgV4ksGbwG+0bnuAu9vywfaYtv5zVVXTLFqSNJnzV+7CFuBAkvMYvFncVVWfTPIE8OEk/w7438Adrf8dwH9PchT4FnDjDOqWJE1gxfCvqsPAZUu0f5XB/P+Z7f8H+M2pVCdJmgm/4StJHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA6tGP5Jtie5P8kTSY4keUdr//0kJ5IcarfrhrZ5V5KjSb6U5Ndm+QIkSeM7f4Q+zwO/U1WPJHkp8HCSe9u626rqPw13TnIpcCPwauBngc8m+btV9cI0C5ckrd6KR/5VdbKqHmnL3wOeBLaeZZPdwIer6rmq+hpwFLhiGsVKkqZjrDn/JDuAy4AHW9PbkxxOcmeSi1vbVuCpoc2Os8SbRZK9SRaSLCwuLo5duCRp9UaZ9gEgyUuAjwHvrKrvJrkd+LdAtfs/BH571P1V1X5gP8D8/HyNU7S0kezY96mp7u/YrddPdX/SUkY68k9yAYPg/2BVfRygqp6uqheq6gfAH/PDqZ0TwPahzbe1NknSBjHK2T4B7gCerKr3DrVvGer2euDxtnwQuDHJhUleAewEHppeyZKkSY0y7fMa4LeAx5Icam2/C7wxyS4G0z7HgLcCVNWRJHcBTzA4U+hmz/SRpI1lxfCvqi8AWWLVPWfZ5hbglgnqkiTNkN/wlaQOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtSh1YM/yTbk9yf5IkkR5K8o7VfkuTeJF9u9xe39iR5X5KjSQ4nuXzWL0KSNJ5RjvyfB36nqi4FrgRuTnIpsA+4r6p2Ave1xwCvA3a2217g9qlXLUmayIrhX1Unq+qRtvw94ElgK7AbONC6HQBuaMu7gQ/UwAPARUm2TL1ySdKqjTXnn2QHcBnwILC5qk62Vd8ANrflrcBTQ5sdb21n7mtvkoUkC4uLi2OWLUmaxMjhn+QlwMeAd1bVd4fXVVUBNc4TV9X+qpqvqvm5ublxNpUkTWik8E9yAYPg/2BVfbw1P316Oqfdn2rtJ4DtQ5tva22SpA1ilLN9AtwBPFlV7x1adRDY05b3AHcPtb+pnfVzJfDM0PSQJGkDOH+EPq8Bfgt4LMmh1va7wK3AXUluAr4OvKGtuwe4DjgKfB94y1QrliRNbMXwr6ovAFlm9TVL9C/g5gnrkiTNkN/wlaQOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0a5Tx/SWtox75PTXV/x269fqr7048Hj/wlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6tGL4J7kzyakkjw+1/X6SE0kOtdt1Q+veleRoki8l+bVZFS5JWr1RjvzfD1y7RPttVbWr3e4BSHIpcCPw6rbNHyU5b1rFSpKmY8Xwr6rPA98acX+7gQ9X1XNV9TXgKHDFBPVJkmZgkjn/tyc53KaFLm5tW4Gnhvocb20/IsneJAtJFhYXFycoQ5I0rtWG/+3AzwG7gJPAH467g6raX1XzVTU/Nze3yjIkSauxqvCvqqer6oWq+gHwx/xwaucEsH2o67bWJknaQFYV/km2DD18PXD6TKCDwI1JLkzyCmAn8NBkJUqSpm3F/8A9yYeAq4BNSY4DvwdclWQXUMAx4K0AVXUkyV3AE8DzwM1V9cJsSpckrdaK4V9Vb1yi+Y6z9L8FuGWSoiRJs+U3fCWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1KEVwz/JnUlOJXl8qO2SJPcm+XK7v7i1J8n7khxNcjjJ5bMsXpK0OqMc+b8fuPaMtn3AfVW1E7ivPQZ4HbCz3fYCt0+nTEnSNK0Y/lX1eeBbZzTvBg605QPADUPtH6iBB4CLkmyZVrGSpOlY7Zz/5qo62Za/AWxuy1uBp4b6HW9tPyLJ3iQLSRYWFxdXWYYkaTUm/sC3qgqoVWy3v6rmq2p+bm5u0jIkSWNYbfg/fXo6p92fau0ngO1D/ba1NknSBrLa8D8I7GnLe4C7h9rf1M76uRJ4Zmh6SJK0QZy/UockHwKuAjYlOQ78HnArcFeSm4CvA29o3e8BrgOOAt8H3jKDmiVJE1ox/KvqjcusumaJvgXcPGlRkqTZWjH8pfW2Y9+n1rsE6ceOl3eQpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQh/xtH6cfctP8bzGO3Xj/V/Wl9TBT+SY4B3wNeAJ6vqvkklwAfAXYAx4A3VNW3JytTkjRN05j2+UdVtauq5tvjfcB9VbUTuK89liRtILOY898NHGjLB4AbZvAckqQJTBr+BXwmycNJ9ra2zVV1si1/A9g84XNIkqZs0g98X1tVJ5L8NHBvki8Or6yqSlJLbdjeLPYCvPzlL5+wDEnSOCY68q+qE+3+FPAJ4Arg6SRbANr9qWW23V9V81U1Pzc3N0kZkqQxrTr8k/xkkpeeXgZ+FXgcOAjsad32AHdPWqQkabommfbZDHwiyen9/GlV/a8kfwncleQm4OvAGyYvU5I0TasO/6r6KvALS7R/E7hmkqIkSbPl5R0kqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtSh7yev6Zu2tePlzR9HvlLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDnmqpzw1U+qQ4S9pLNM+WDh26/VT3Z9G47SPJHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6tDMwj/JtUm+lORokn2zeh5J0vhmEv5JzgP+C/A64FLgjUkuncVzSZLGN6sveV0BHK2qrwIk+TCwG3hiRs+3YfntWUkb0azCfyvw1NDj48AvDndIshfY2x4+l+TxGdUyTZuAv17vIkZgndN1LtR5LtQIS9SZ96xTJWd3roznz692w3W7vENV7Qf2AyRZqKr59aplVNY5XdY5PedCjWCd05ZkYbXbzuoD3xPA9qHH21qbJGkDmFX4/yWwM8krkrwIuBE4OKPnkiSNaSbTPlX1fJK3A38OnAfcWVVHzrLJ/lnUMQPWOV3WOT3nQo1gndO26jpTVdMsRJJ0DvAbvpLUIcNfkjq0LuGf5D8m+WKSw0k+keSiZfqt6yUikvxmkiNJfpBk2dO+khxL8liSQ5OcerVaY9S53uN5SZJ7k3y53V+8TL8X2lgeSrImJwqsNDZJLkzykbb+wSQ71qKuJepYqc43J1kcGr9/tg413pnk1HLf3cnA+9prOJzk8rWusdWxUp1XJXlmaCz/9VrX2OrYnuT+JE+0f+fvWKLP+GNaVWt+A34VOL8tvwd4zxJ9zgO+ArwSeBHwKHDpGtf59xh8ieIvgPmz9DsGbFqPsRy1zg0ynv8B2NeW9y31c2/rnl3julYcG+CfA/+1Ld8IfGQdfs6j1Plm4D+vdW1n1PAPgcuBx5dZfx3waSDAlcCDG7TOq4BPrudYtjq2AJe35ZcCf7XEz33sMV2XI/+q+kxVPd8ePsDgewBn+ptLRFTV/wVOXyJizVTVk1X1pbV8ztUYsc51H8/2fAfa8gHghjV+/uWMMjbDtX8UuCZJ1rBG2Bg/wxVV1eeBb52ly27gAzXwAHBRki1rU90PjVDnhlBVJ6vqkbb8PeBJBldRGDb2mG6EOf/fZvCOdaalLhFx5gveKAr4TJKH22UrNqKNMJ6bq+pkW/4GsHmZfi9OspDkgSRr8QYxytj8TZ924PIM8LI1qG3JGprlfob/tP3p/9Ek25dYv942wu/iqH4pyaNJPp3k1etdTJtuvAx48IxVY4/pzC7vkOSzwM8sserdVXV36/Nu4Hngg7OqYyWj1DmC11bViSQ/Ddyb5IvtqGJqplTnzJ2tzuEHVVVJljvP+G+38Xwl8Lkkj1XVV6Zd64+pPwM+VFXPJXkrg79Wrl7nms5VjzD4XXw2yXXA/wR2rlcxSV4CfAx4Z1V9d9L9zSz8q+ofn219kjcD/wS4ptqk1RnW5BIRK9U54j5OtPtTST7B4M/zqYb/FOpc9/FM8nSSLVV1sv1JemqZfZwez68m+QsGRzqzDP9RxuZ0n+NJzgd+CvjmDGtayop1VtVwTX/C4HOWjeacuPzLcMBW1T1J/ijJpqpa8wu+JbmAQfB/sKo+vkSXscd0vc72uRb4l8CvV9X3l+l2TlwiIslPJnnp6WUGH2ZvxCuUboTxPAjsact7gB/5iyXJxUkubMubgNcw+0uBjzI2w7X/BvC5ZQ5aZmnFOs+Y5/11BvPDG81B4E3tDJUrgWeGpgM3jCQ/c/pznSRXMMjLtX7Dp9VwB/BkVb13mW7jj+k6fXp9lMH81KF2O30Wxc8C95zxCfZfMTjqe/c61Pl6BnNnzwFPA39+Zp0Mzrx4tN2ObNQ6N8h4vgy4D/gy8FngktY+D/xJW/5l4LE2no8BN61RbT8yNsC/YXCAAvBi4H+0392HgFeu9fiNWOe/b7+HjwL3A69ahxo/BJwE/l/7vbwJeBvwtrY+DP6zp6+0n/GyZ9Ktc51vHxrLB4BfXqc6X8vgc8XDQ5l53aRj6uUdJKlDG+FsH0nSGjP8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUof+PwjfH3wlkKRXAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASwUlEQVR4nO3df6zdd33f8eerMYGJMuyQWzezzRxUqyz8AURXSSioYmR1QkA40wBFmhZDXXnV0olKkzozpEULRUs2qYxoI5NFsjkVJaRpWTxIG9wkqNofCbmB/CAJ1Jc0UWw5sYuDWxY1Xeh7f5yPPzsz9+aee+/xucfh+ZCOzvf7+X6+57y/n3vt1/n+ON+bqkKSJICfWesCJEnTw1CQJHWGgiSpMxQkSZ2hIEnq1q11Aa/k3HPPra1bt651GZJ0RnnooYf+oqpmVrLuVIfC1q1bmZubW+syJOmMkuSZla470uGjJOuT3JHku0meTPKuJOckOZDkYHve0PomyY1J5pM8muTCodfZ2fofTLJzpUVLkk6PUc8pfA7446p6K/B24ElgD3BPVW0D7mnzAO8HtrXHbuAmgCTnANcCFwMXAdeeDBJJ0nRYMhSSvBH4ZeBmgKr6m6r6IbAD2Ne67QOubNM7gFtr4H5gfZLzgMuAA1V1vKpeAA4Al491ayRJqzLKnsL5wDHgvyX5dpIvJHk9sLGqjrQ+zwEb2/Qm4Nmh9Q+1tsXa/z9JdieZSzJ37Nix5W2NJGlVRgmFdcCFwE1V9U7gf/P/DhUBUIMbKI3lJkpVtbeqZqtqdmZmRSfPJUkrNEooHAIOVdUDbf4OBiHxfDssRHs+2pYfBrYMrb+5tS3WLkmaEkuGQlU9Bzyb5Bdb06XAE8B+4OQVRDuBO9v0fuDqdhXSJcCJdpjpbmB7kg3tBPP21iZJmhKjfk/hXwJfTHI28BTwcQaBcnuSXcAzwEdb37uAK4B54MXWl6o6nuTTwIOt33VVdXwsWyFJGotM899TmJ2dLb+8JknLk+ShqppdybpT/Y1m6XTYuudrp/09nr7+A6f9PaTTwRviSZI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJK6kUIhydNJHkvycJK51nZOkgNJDrbnDa09SW5MMp/k0SQXDr3Oztb/YJKdp2eTJEkrtZw9hX9YVe+oqtk2vwe4p6q2Afe0eYD3A9vaYzdwEwxCBLgWuBi4CLj2ZJBIkqbDag4f7QD2tel9wJVD7bfWwP3A+iTnAZcBB6rqeFW9ABwALl/F+0uSxmzUUCjg60keSrK7tW2sqiNt+jlgY5veBDw7tO6h1rZYuyRpSqwbsd97qupwkp8DDiT57vDCqqokNY6CWujsBnjzm988jpeUJI1opD2Fqjrcno8CX2FwTuD5dliI9ny0dT8MbBlafXNrW6z91PfaW1WzVTU7MzOzvK2RJK3KkqGQ5PVJ3nByGtgOfAfYD5y8gmgncGeb3g9c3a5CugQ40Q4z3Q1sT7KhnWDe3tokSVNilMNHG4GvJDnZ//eq6o+TPAjcnmQX8Azw0db/LuAKYB54Efg4QFUdT/Jp4MHW77qqOj62LZEkrdqSoVBVTwFvX6D9B8ClC7QXcM0ir3ULcMvyy5QkTYLfaJYkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJ3cihkOSsJN9O8tU2f36SB5LMJ/lykrNb+2vb/HxbvnXoNT7Z2r+X5LJxb4wkaXWWs6fwCeDJofkbgM9W1S8ALwC7Wvsu4IXW/tnWjyQXAFcBbwMuBz6f5KzVlS9JGqeRQiHJZuADwBfafID3AXe0LvuAK9v0jjZPW35p678DuK2qXqqqPwfmgYvGsRGSpPEYdU/hPwG/Bfxtm38T8MOqernNHwI2telNwLMAbfmJ1r+3L7BOl2R3krkkc8eOHVvGpkiSVmvJUEjyQeBoVT00gXqoqr1VNVtVszMzM5N4S0lSs26EPu8GPpTkCuB1wN8FPgesT7Ku7Q1sBg63/oeBLcChJOuANwI/GGo/aXgdSdIUWHJPoao+WVWbq2orgxPF91bVPwXuAz7cuu0E7mzT+9s8bfm9VVWt/ap2ddL5wDbgm2PbEknSqo2yp7CYfw3cluS3gW8DN7f2m4HfTTIPHGcQJFTV40luB54AXgauqaofr+L9JUljtqxQqKpvAN9o00+xwNVDVfXXwEcWWf8zwGeWW6QkaTL8RrMkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEndkqGQ5HVJvpnkkSSPJ/l3rf38JA8kmU/y5SRnt/bXtvn5tnzr0Gt9srV/L8llp2ujJEkrM8qewkvA+6rq7cA7gMuTXALcAHy2qn4BeAHY1frvAl5o7Z9t/UhyAXAV8DbgcuDzSc4a58ZIklZnyVCogR+12de0RwHvA+5o7fuAK9v0jjZPW35pkrT226rqpar6c2AeuGgsWyFJGouRzikkOSvJw8BR4ADwfeCHVfVy63II2NSmNwHPArTlJ4A3DbcvsM7we+1OMpdk7tixY8vfIknSio0UClX146p6B7CZwaf7t56ugqpqb1XNVtXszMzM6XobSdIClnX1UVX9ELgPeBewPsm6tmgzcLhNHwa2ALTlbwR+MNy+wDqSpCkwytVHM0nWt+m/A/wK8CSDcPhw67YTuLNN72/ztOX3VlW19qva1UnnA9uAb45rQyRJq7du6S6cB+xrVwr9DHB7VX01yRPAbUl+G/g2cHPrfzPwu0nmgeMMrjiiqh5PcjvwBPAycE1V/Xi8myNJWo0lQ6GqHgXeuUD7Uyxw9VBV/TXwkUVe6zPAZ5ZfpiRpEvxGsySpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEndKH+jWZqIrXu+ttYlSD/13FOQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqRuyVBIsiXJfUmeSPJ4kk+09nOSHEhysD1vaO1JcmOS+SSPJrlw6LV2tv4Hk+w8fZslSVqJUfYUXgb+VVVdAFwCXJPkAmAPcE9VbQPuafMA7we2tcdu4CYYhAhwLXAxcBFw7ckgkSRNhyVDoaqOVNW32vRfAU8Cm4AdwL7WbR9wZZveAdxaA/cD65OcB1wGHKiq41X1AnAAuHysWyNJWpVlnVNIshV4J/AAsLGqjrRFzwEb2/Qm4Nmh1Q61tsXaT32P3UnmkswdO3ZsOeVJklZp5FBI8rPAHwC/WVV/ObysqgqocRRUVXuraraqZmdmZsbxkpKkEY0UCklewyAQvlhVf9ian2+HhWjPR1v7YWDL0OqbW9ti7ZKkKTHK1UcBbgaerKrfGVq0Hzh5BdFO4M6h9qvbVUiXACfaYaa7ge1JNrQTzNtbmyRpSozy9xTeDfwz4LEkD7e2fwNcD9yeZBfwDPDRtuwu4ApgHngR+DhAVR1P8mngwdbvuqo6PpatkCSNxZKhUFX/C8giiy9doH8B1yzyWrcAtyynQEnS5PiNZklSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkrolQyHJLUmOJvnOUNs5SQ4kOdieN7T2JLkxyXySR5NcOLTOztb/YJKdp2dzJEmrMcqewn8HLj+lbQ9wT1VtA+5p8wDvB7a1x27gJhiECHAtcDFwEXDtySCRJE2PJUOhqv4UOH5K8w5gX5veB1w51H5rDdwPrE9yHnAZcKCqjlfVC8ABfjJoJElrbKXnFDZW1ZE2/RywsU1vAp4d6neotS3W/hOS7E4yl2Tu2LFjKyxPkrQSqz7RXFUF1BhqOfl6e6tqtqpmZ2ZmxvWykqQRrDQUnm+HhWjPR1v7YWDLUL/NrW2xdknSFFlpKOwHTl5BtBO4c6j96nYV0iXAiXaY6W5ge5IN7QTz9tYmSZoi65bqkORLwHuBc5McYnAV0fXA7Ul2Ac8AH23d7wKuAOaBF4GPA1TV8SSfBh5s/a6rqlNPXkuS1lgGpwSm0+zsbM3Nza11GZqQrXu+ttYlnFGevv4Da12CplSSh6pqdiXr+o1mSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSd2SX16TwO8QSD8t3FOQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM4/svMq4B/AkTQu7ilIkjpDQZLUTfzwUZLLgc8BZwFfqKrrJ13DJHloR9KZZKKhkOQs4L8AvwIcAh5Msr+qnphkHdKrwSQ+cDx9/QdO+3toukx6T+EiYL6qngJIchuwA1gwFB47fMJP2pI0QZMOhU3As0Pzh4CLhzsk2Q3sbrMvPXPDB78zodpW41zgL9a6iBFY53i96uvMDWOuZHGv+rGcsF9c6YpTd0lqVe0F9gIkmauq2TUuaUnWOV7WOV5nQp1nQo1wZtW50nUnffXRYWDL0Pzm1iZJmgKTDoUHgW1Jzk9yNnAVsH/CNUiSFjHRw0dV9XKS3wDuZnBJ6i1V9fgrrLJ3MpWtmnWOl3WO15lQ55lQI/wU1JmqGmchkqQzmN9oliR1hoIkqZuqUEjyH5N8N8mjSb6SZP0i/S5P8r0k80n2rEGdH0nyeJK/TbLo5WlJnk7yWJKHV3OJ2Eoto861Hs9zkhxIcrA9b1ik34/bWD6cZCIXKCw1Nklem+TLbfkDSbZOoq4F6liqzo8lOTY0fr+2RnXekuRokgW/f5SBG9t2PJrkwims8b1JTgyN5b+ddI2tji1J7kvyRPt3/okF+ix/PKtqah7AdmBdm74BuGGBPmcB3wfeApwNPAJcMOE6/wGDL4d8A5h9hX5PA+eu4XguWeeUjOd/APa06T0L/dzbsh9NuK4lxwb4F8B/bdNXAV9eg5/zKHV+DPjPk65tgVp/GbgQ+M4iy68A/ggIcAnwwBTW+F7gq1MwlucBF7bpNwB/tsDPfdnjOVV7ClX19ap6uc3ez+B7DKfqt8qoqr8BTt4qY2Kq6smq+t4k33MlRqxzzcezvd++Nr0PuHLC77+YUcZmuPY7gEuTZII1wnT8DEdSVX8KHH+FLjuAW2vgfmB9kvMmU93ACDVOhao6UlXfatN/BTzJ4K4Rw5Y9nlMVCqf4VQYJd6qFbpVx6kBMiwK+nuShdvuOaTQN47mxqo606eeAjYv0e12SuST3J5lEcIwyNr1P+0BzAnjTBGpbsIZmsZ/hP2mHEO5IsmWB5dNgGn4fR/GuJI8k+aMkb1vrYtphy3cCD5yyaNnjuRa3zv4T4OcXWPSpqrqz9fkU8DLwxUnWNmyUOkfwnqo6nOTngANJvts+hYzNmOo87V6pzuGZqqoki10n/ffbeL4FuDfJY1X1/XHX+ir1P4EvVdVLSf45g72b961xTWeqbzH4XfxRkiuA/wFsW6tikvws8AfAb1bVX6729SYeClX1j15peZKPAR8ELq12UOwUE7lVxlJ1jvgah9vz0SRfYbCbP9ZQGEOdaz6eSZ5Pcl5VHWm7tkcXeY2T4/lUkm8w+GR0OkNhlLE52edQknXAG4EfnMaaFrJknVU1XNMXGJzHmUZTfyuc4f94q+quJJ9Pcm5VTfxGeUlewyAQvlhVf7hAl2WP51QdPsrgD/D8FvChqnpxkW5nxK0ykrw+yRtOTjM4iT6Nd3ydhvHcD+xs0zuBn9jDSbIhyWvb9LnAu1nklutjNMrYDNf+YeDeRT7MnE5L1nnKceQPMTj+PI32A1e3q2YuAU4MHVqcCkl+/uR5oyQXMfh/dNIfBGg13Aw8WVW/s0i35Y/nWp9BP+VM+TyD418Pt8fJqzr+HnDXKWfU/4zBp8RPrUGd/5jBsbmXgOeBu0+tk8GVII+0x+PTWueUjOebgHuAg8CfAOe09lkGf50P4JeAx9p4PgbsmlBtPzE2wHUMPrgAvA74/fa7+03gLZMevxHr/Pft9/AR4D7grWtU55eAI8D/ab+bu4BfB369LQ+DP8T1/fZzXvTqvjWs8TeGxvJ+4JfWaCzfw+C85aND/2desdrx9DYXkqRuqg4fSZLWlqEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1/xfd57J3YnPxKgAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAPn0lEQVR4nO3db4xldX3H8fdHdtWmElF3Kttl19VIbNVUoRPEP2mI1gbRQBsxwQcqFrPVSqqJSbNqgilPKm2iiWIlGyGCIUiLf7rqEsWKUR+ADpvdhWX9sxgalmxlAbtItNi13z64Bzu9zOy9c+fMnVl+71dyM+fc87v3fObM3c+cOffcs6kqJElPfk9Z7QCSpOmw8CWpERa+JDXCwpekRlj4ktSIdau14g0bNtTWrVtXa/WSdEK64447HqyqmUkeu2qFv3XrVubm5lZr9ZJ0Qkry75M+1kM6ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREjCz/J05N8P8neJPuT/N0CY56W5MYkB5PcnmTrSoSVJE1unD38x4DXVtXLgJcD5yY5e2jMJcDPq+qFwMeBK/qNKUlarpGFXwOPdrPru9vwRfQvAK7tpm8CXpckvaWUJC3bWJ+0TXIScAfwQuBTVXX70JBNwH0AVXUsyVHgOcCDQ8+zDdgGsGXLluUll1bZ1u1fm+hx9370jT0nkcYz1pu2VfWbqno5cBpwVpKXTrKyqtpRVbNVNTszM9GlICRJE1rSWTpV9Z/ArcC5Q4vuBzYDJFkHPBN4qI+AkqR+jHOWzkySU7rp3wFeD/xwaNhO4B3d9IXAt8r/LFeS1pRxjuFvBK7tjuM/BfjnqvpqksuBuaraCVwNfC7JQeBh4KIVSyxJmsjIwq+qfcAZC9x/2bzp/wLe0m80SVKf/KStJDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiMsfElqhIUvSY2w8CWpERa+JDViZOEn2Zzk1iR3J9mf5H0LjDknydEke7rbZSsTV5I0qXVjjDkGfKCqdic5GbgjyS1VdffQuO9W1Zv6jyhJ6sPIPfyqOlxVu7vpXwAHgE0rHUyS1K8lHcNPshU4A7h9gcWvTLI3yc1JXrLI47clmUsyd+TIkSWHlSRNbuzCT/IM4AvA+6vqkaHFu4HnVdXLgE8CX17oOapqR1XNVtXszMzMpJklSRMYq/CTrGdQ9tdX1ReHl1fVI1X1aDe9C1ifZEOvSSVJyzLOWToBrgYOVNXHFhlzajeOJGd1z/tQn0ElScszzlk6rwbeBtyZZE9334eALQBVdRVwIfCeJMeAXwEXVVWtQF5J0oRGFn5VfQ/IiDFXAlf2FUqS1D8/aStJjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiMsfElqhIUvSY2w8CWpERa+JDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRIws/yeYktya5O8n+JO9bYEySfCLJwST7kpy5MnElSZNaN8aYY8AHqmp3kpOBO5LcUlV3zxvzBuD07vYK4NPdV0nSGjFyD7+qDlfV7m76F8ABYNPQsAuA62rgNuCUJBt7TytJmtg4e/i/lWQrcAZw+9CiTcB98+YPdfcdHnr8NmAbwJYtW5aWVBrT1u1fW/Jj7v3oG1cgycLWej49eY39pm2SZwBfAN5fVY9MsrKq2lFVs1U1OzMzM8lTSJImNFbhJ1nPoOyvr6ovLjDkfmDzvPnTuvskSWvEOGfpBLgaOFBVH1tk2E7g7d3ZOmcDR6vq8CJjJUmrYJxj+K8G3gbcmWRPd9+HgC0AVXUVsAs4DzgI/BJ4Z/9RJUnLMbLwq+p7QEaMKeC9fYWSJPXPT9pKUiMsfElqhIUvSY2w8CWpERa+JDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiNGFn6Sa5I8kOSuRZafk+Rokj3d7bL+Y0qSlmvdGGM+C1wJXHecMd+tqjf1kkiStCJG7uFX1XeAh6eQRZK0gvo6hv/KJHuT3JzkJYsNSrItyVySuSNHjvS0aknSOPoo/N3A86rqZcAngS8vNrCqdlTVbFXNzszM9LBqSdK4ll34VfVIVT3aTe8C1ifZsOxkkqReLbvwk5yaJN30Wd1zPrTc55Uk9WvkWTpJbgDOATYkOQR8BFgPUFVXARcC70lyDPgVcFFV1YolliRNZGThV9VbRyy/ksFpm5KkNcxP2kpSIyx8SWqEhS9JjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiMsfElqhIUvSY2w8CWpERa+JDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWrEyMJPck2SB5LctcjyJPlEkoNJ9iU5s/+YkqTlGmcP/7PAucdZ/gbg9O62Dfj08mNJkvo2svCr6jvAw8cZcgFwXQ3cBpySZGNfASVJ/VjXw3NsAu6bN3+ou+/w8MAk2xj8FcCWLVt6WPWT09btX1vyY+796BvX9LomWc+k65K0sKm+aVtVO6pqtqpmZ2ZmprlqSWpeH4V/P7B53vxp3X2SpDWkj8LfCby9O1vnbOBoVT3hcI4kaXWNPIaf5AbgHGBDkkPAR4D1AFV1FbALOA84CPwSeOdKhZUkTW5k4VfVW0csL+C9vSWSJK0IP2krSY2w8CWpERa+JDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiMsfElqhIUvSY0Yq/CTnJvkR0kOJtm+wPKLkxxJsqe7vav/qJKk5Vg3akCSk4BPAa8HDgE/SLKzqu4eGnpjVV26AhklST0YZw//LOBgVf20qn4NfB64YGVjSZL6Nk7hbwLumzd/qLtv2JuT7EtyU5LNCz1Rkm1J5pLMHTlyZIK4kqRJ9fWm7VeArVX1R8AtwLULDaqqHVU1W1WzMzMzPa1akjSOcQr/fmD+Hvtp3X2/VVUPVdVj3exngD/uJ54kqS/jFP4PgNOTPD/JU4GLgJ3zByTZOG/2fOBAfxElSX0YeZZOVR1LcinwdeAk4Jqq2p/kcmCuqnYCf5PkfOAY8DBw8QpmliRNYGThA1TVLmDX0H2XzZv+IPDBfqNJkvrkJ20lqREWviQ1wsKXpEZY+JLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRFr4kNcLCl6RGWPiS1AgLX5IaYeFLUiMsfElqhIUvSY2w8CWpERa+JDXCwpekRlj4ktQIC1+SGmHhS1IjLHxJaoSFL0mNsPAlqREWviQ1YqzCT3Jukh8lOZhk+wLLn5bkxm757Um29h1UkrQ8Iws/yUnAp4A3AC8G3prkxUPDLgF+XlUvBD4OXNF3UEnS8oyzh38WcLCqflpVvwY+D1wwNOYC4Npu+ibgdUnSX0xJ0nKlqo4/ILkQOLeq3tXNvw14RVVdOm/MXd2YQ938Pd2YB4eeaxuwrZt9KXBXX9/ICtoAPDhy1OozZ79OhJwnQkYwZ99eVFUnT/LAdX0nOZ6q2gHsAEgyV1Wz01z/JMzZL3P250TICObsW5K5SR87ziGd+4HN8+ZP6+5bcEySdcAzgYcmDSVJ6t84hf8D4PQkz0/yVOAiYOfQmJ3AO7rpC4Fv1ahjRZKkqRp5SKeqjiW5FPg6cBJwTVXtT3I5MFdVO4Grgc8lOQg8zOCXwig7lpF7mszZL3P250TICObs28Q5R75pK0l6cvCTtpLUCAtfkhoxtcJP8o9JfphkX5IvJTllkXHHvYzDFHK+Jcn+JP+TZNFTtJLcm+TOJHuWc5rUpJaQc7W357OT3JLkJ93XZy0y7jfdttyTZPikgJXKdkJcMmSMnBcnOTJv+71rFTJek+SB7jM5Cy1Pkk9038O+JGdOO2OXY1TOc5IcnbctL5t2xi7H5iS3Jrm7+3f+vgXGLH2bVtVUbsCfAeu66SuAKxYYcxJwD/AC4KnAXuDF08rYZfhD4EXAt4HZ44y7F9gwzWxLzblGtuc/ANu76e0L/dy7ZY9OOdfIbQP8NXBVN30RcOMq/JzHyXkxcOW0sw1l+BPgTOCuRZafB9wMBDgbuH2N5jwH+Opqbssux0bgzG76ZODHC/zcl7xNp7aHX1XfqKpj3extDM7nHzbOZRxWVFUdqKofTXOdkxgz56pvT/7/ZTeuBf58yutfzIlyyZC18DMcqaq+w+AMvcVcAFxXA7cBpyTZOJ10/2eMnGtCVR2uqt3d9C+AA8CmoWFL3qardQz/Lxn8Zhq2Cbhv3vwhnvhNrhUFfCPJHd0lI9aitbA9n1tVh7vp/wCeu8i4pyeZS3Jbkmn8Uhhn2/x2TLezchR4zhSyLZihs9jP8M3dn/U3Jdm8wPLVthZei+N6ZZK9SW5O8pLVDtMdSjwDuH1o0ZK3aa+XVkjyTeDUBRZ9uKr+tRvzYeAYcH2f616KcXKO4TVVdX+S3wNuSfLDbu+hNz3lXHHHyzl/pqoqyWLnAT+v254vAL6V5M6quqfvrE9SXwFuqKrHkvwVg79KXrvKmU5Uuxm8Fh9Nch7wZeD01QqT5BnAF4D3V9Ujy32+Xgu/qv70eMuTXAy8CXhddQehhoxzGYdlG5VzzOe4v/v6QJIvMfjTu9fC7yHnqm/PJD9LsrGqDnd/bj6wyHM8vj1/muTbDPZoVrLwl3LJkEOreMmQkTmran6mzzB432Stmcprcbnml2pV7UryT0k21NCFIKchyXoGZX99VX1xgSFL3qbTPEvnXOBvgfOr6peLDBvnMg6rLsnvJjn58WkGb0ivxSt/roXtOf+yG+8AnvCXSZJnJXlaN70BeDVw9wrnOlEuGTIy59Bx2/MZHO9da3YCb+/OLDkbODrvUN+akeTUx9+nSXIWg46c+nXBugxXAweq6mOLDFv6Np3iu84HGRxv2tPdHj/74feBXUPvPP+Ywd7dh6eVb976/4LBsbDHgJ8BXx/OyeCMib3dbf9azblGtudzgH8DfgJ8E3h2d/8s8Jlu+lXAnd32vBO4ZErZnrBtgMsZ7JQAPB34l+61+33gBdPefmPm/PvudbgXuBX4g1XIeANwGPjv7nV5CfBu4N3d8jD4j5Tu6X7Gi54Bt8o5L523LW8DXrVKOV/D4H3CffM687zlblMvrSBJjfCTtpLUCAtfkhph4UtSIyx8SWqEhS9JjbDwJakRFr4kNeJ/AaGQWT1UTlg7AAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"tags": [],
|
||
"needs_background": "light"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "fBxoI77_S-Tj"
|
||
},
|
||
"source": [
|
||
""
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
}
|
||
]
|
||
} |