Computer_Vision/Chapter07/images/.ipynb_checkpoints/convert-to-yolo-format-checkpoint.ipynb
2024-02-13 03:34:51 +01:00

14 KiB
Raw Permalink Blame History

from torch_snippets import *
from sklearn.model_selection import train_test_split
df = pd.read_csv('df.csv')
trn_df, val_df = train_test_split(df, random_state=10)

df_mini = df[df.ImageID.isin(df.ImageID.unique()[:500].tolist())]
trn_df_mini, val_df_mini = train_test_split(df_mini, random_state=10)

df_micro = df[df.ImageID.isin(df.ImageID.unique()[:50].tolist())]
trn_df_micro, val_df_micro = train_test_split(df_micro, random_state=10)

len(df)
df.head()
ImageID Source LabelName Confidence XMin XMax YMin YMax IsOccluded IsTruncated ... IsDepiction IsInside XClick1X XClick2X XClick3X XClick4X XClick1Y XClick2Y XClick3Y XClick4Y
0 0000599864fd15b3 xclick Bus 1 0.343750 0.908750 0.156162 0.650047 1 0 ... 0 0 0.421875 0.343750 0.795000 0.908750 0.156162 0.512700 0.650047 0.457197
1 00006bdb1eb5cd74 xclick Truck 1 0.276667 0.697500 0.141604 0.437343 1 0 ... 0 0 0.299167 0.276667 0.697500 0.659167 0.141604 0.241855 0.352130 0.437343
2 00006bdb1eb5cd74 xclick Truck 1 0.702500 0.999167 0.204261 0.409774 1 1 ... 0 0 0.849167 0.702500 0.906667 0.999167 0.204261 0.398496 0.409774 0.295739
3 00010bf498b64bab xclick Bus 1 0.156250 0.371250 0.269188 0.705228 0 0 ... 0 0 0.274375 0.371250 0.311875 0.156250 0.269188 0.493882 0.705228 0.521691
4 00013f14dd4e168f xclick Bus 1 0.287500 0.999375 0.194184 0.999062 0 1 ... 0 0 0.920000 0.999375 0.648750 0.287500 0.194184 0.303940 0.999062 0.523452

5 rows × 21 columns

labels = ['Bus', 'Truck']

def do(trn_df, val_df, folder):
    splits = [('train', trn_df), ('val', val_df)]
    for split, df in splits:
        os.makedirs(f'{folder}/labels', exist_ok=True)
        ImageIDs = df.ImageID.unique()
        for ImageID in ImageIDs:
            fname = ImageID
            _df = df[df['ImageID'] == ImageID][['LabelName','XMin','YMin','XMax','YMax']]
            _df['Xc'] = (_df['XMax'] + _df['XMin'])/2
            _df['Yc'] = (_df['YMax'] + _df['YMin'])/2
            _df['w'] = _df['XMax'] - _df['XMin']
            _df['h'] = _df['YMax'] - _df['YMin']
            _df['LabelName'] = _df['LabelName'].map(lambda x: labels.index(x))
            _df.drop(['XMin','YMin','XMax','YMax'], inplace=True, axis=1)
            with open(f'{folder}/labels/{fname}.txt', 'w') as f:
                for a,b,c,d,e in _df.values:
                    f.write(f'{int(a)} {b} {c} {d} {e}')
                    f.write('\n')
        with open(f'{folder}/{split}.txt', 'w') as f:
            for ImageID in ImageIDs:
                f.write(f'{ImageID}.jpg\n')

do(trn_df_micro, val_df_micro, 'yolo_labels/micro/')
do(trn_df_mini, val_df_mini, 'yolo_labels/mini/')
do(trn_df, val_df, 'yolo_labels/all/')
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-26-ca0e2222a2b7> in <module>
     25 do(trn_df_micro, val_df_micro, 'yolo_labels/micro/')
     26 do(trn_df_mini, val_df_mini, 'yolo_labels/mini/')
---> 27 do(trn_df, val_df, 'yolo_labels/all/')

<ipython-input-26-ca0e2222a2b7> in do(trn_df, val_df, folder)
     15             _df['LabelName'] = _df['LabelName'].map(lambda x: labels.index(x))
     16             _df.drop(['XMin','YMin','XMax','YMax'], inplace=True, axis=1)
---> 17             with open(f'{folder}/{fname}.txt', 'w') as f:
     18                 for a,b,c,d,e in _df.values:
     19                     f.write(f'{int(a)} {b} {c} {d} {e}')

FileNotFoundError: [Errno 2] No such file or directory: 'yolo_labels/all//b708f693265636d6.txt'