Computer_Vision/Chapter07/images/.ipynb_checkpoints/convert-to-coco-format-checkpoint.ipynb
2024-02-13 03:34:51 +01:00

16 KiB
Raw Blame History

from torch_snippets import *
from sklearn.model_selection import train_test_split
df = pd.read_csv('df.csv')
trn_df, val_df = train_test_split(df, random_state=10)

df_mini = df[df.ImageID.isin(df.ImageID.unique()[:500].tolist())]
trn_df_mini, val_df_mini = train_test_split(df_mini, random_state=10)

len(df)
df.head()
ImageID Source LabelName Confidence XMin XMax YMin YMax IsOccluded IsTruncated ... IsDepiction IsInside XClick1X XClick2X XClick3X XClick4X XClick1Y XClick2Y XClick3Y XClick4Y
0 0000599864fd15b3 xclick Bus 1 0.343750 0.908750 0.156162 0.650047 1 0 ... 0 0 0.421875 0.343750 0.795000 0.908750 0.156162 0.512700 0.650047 0.457197
1 00006bdb1eb5cd74 xclick Truck 1 0.276667 0.697500 0.141604 0.437343 1 0 ... 0 0 0.299167 0.276667 0.697500 0.659167 0.141604 0.241855 0.352130 0.437343
2 00006bdb1eb5cd74 xclick Truck 1 0.702500 0.999167 0.204261 0.409774 1 1 ... 0 0 0.849167 0.702500 0.906667 0.999167 0.204261 0.398496 0.409774 0.295739
3 00010bf498b64bab xclick Bus 1 0.156250 0.371250 0.269188 0.705228 0 0 ... 0 0 0.274375 0.371250 0.311875 0.156250 0.269188 0.493882 0.705228 0.521691
4 00013f14dd4e168f xclick Bus 1 0.287500 0.999375 0.194184 0.999062 0 1 ... 0 0 0.920000 0.999375 0.648750 0.287500 0.194184 0.303940 0.999062 0.523452

5 rows × 21 columns

val_df_mini.LabelName.unique()
array(['Bus', 'Truck'], dtype=object)
categories = [{'id': 1, 'name': 'Bus', 'supercategory': 'none'}, {'id': 2, 'name': 'Truck', 'supercategory': 'none'}]
category_ids = {'Bus': 1, 'Truck': 2}
def get_image_infos(df):
    image_infos = []
    for image in df['ImageID'].unique():
        info = {}
        info['file_name'] = image+'.jpg'
        im = read(f'images/{image}.jpg')
        h, w = im.shape
        info['height'], info['width'] = h, w
        info['id'] = len(image_infos)+1
        image_infos.append(info)
    return image_infos
def get_annotations_for_image_info(image_info, df):
    imginfo = image_info['file_name'].split('.')[0]
    image_id = image_info['id']
    h, w = image_info['height'], image_info['width']
    _df = df[df['ImageID'] == imginfo]
    annotations = []
    for ix, row in _df.iterrows():
        annot = {}
        row = row.squeeze()
        x,y,X,Y = row.XMin,row.YMin,row.XMax,row.YMax
        x,y,X,Y = x*w,y*h,X*w,Y*h
        x,y,X,Y = [int(i) for i in [x,y,X,Y]]
        annot['bbox'] = [x,y,X-x,Y-y]
        annot['ignore'] = '0'
        annot['category_id'] = category_ids[row.LabelName]
        annot['area'] = (X-x)*(Y-y)
        annot['iscrowd'] = 0
        annot['segmentation'] = [[x,y,x,Y,X,Y,X,y]]
        annot['image_id'] = image_id
        annotations.append(annot)
    return annotations
def get_annotations_for_all_image_infos(image_infos, df):
    ANNOTATIONS = []
    for image_info in image_infos:
        annotations = get_annotations_for_image_info(image_info, df)
        for annot in annotations:
            annot['id'] = len(ANNOTATIONS) + 1
            ANNOTATIONS.append(annot)
    return ANNOTATIONS
def get_coco_annotations(df):
    image_infos = get_image_infos(df)
    annotations = get_annotations_for_all_image_infos(image_infos, df)
    data_in_coco_format = {}
    data_in_coco_format['annotations'] = annotations
    data_in_coco_format['categories'] = categories
    data_in_coco_format['images'] = image_infos
    data_in_coco_format['type'] = 'instances'
    return data_in_coco_format
import json
!mkdir annotations
json.dump(get_coco_annotations(trn_df), open('annotations/open_images_train_coco_format.json','w'),indent=4)
json.dump(get_coco_annotations(val_df), open('annotations/open_images_val_coco_format.json','w'),indent=4)

Load and test

category_ids = {'Bus': 0, 'Truck': 1}
def get_dump(df):
    data = []
    for imageID in df.ImageID.unique():
        filename = imageID+'.jpg'
        width, height = read(f'images/{filename}').shape
        _df = df[df.ImageID==imageID]
        bbs = _df['XMin,YMin,XMax,YMax'.split(',')].values
        bbs = bbs*np.array([width,height,width,height])
        # bbs[:,2:] = bbs[:,2:] - bbs[:,:2]
        labels = np.array([category_ids[ix] for ix in _df['LabelName']])
        if len(labels) == 0: continue
        annot = dict(
            filename=filename,
            width=width, height=height,
            ann=dict(
                bboxes=bbs.astype(np.float32),
                labels=labels.astype(np.int64)
            )
        )
        data.append(annot)
    return data

import pickle
pickle.dump(get_dump(trn_df_mini), open('pickles/2-mini-open-images-bus-truck-train.pickle', 'wb'))
pickle.dump(get_dump(val_df_mini), open('pickles/2-mini-open-images-bus-truck-val.pickle', 'wb'))

# pickle.dump(get_dump(trn_df_mini), open('mini-open-images-bus-truck-train.pickle', 'wb'))
# pickle.dump(get_dump(val_df_mini), open('mini-open-images-bus-truck-val.pickle', 'wb'))
from mmcv import load
data = load('open-images-bus-truck-train.pickle')
data[:3]
[{'filename': '02b4c34bd52f1217.jpg',
  'width': 194,
  'height': 256,
  'ann': {'bboxes': array([[  0.      , 126.014465, 159.44376 , 105.36499 ]], dtype=float32),
   'labels': array([1])}},
 {'filename': '9b92c6f48307ece3.jpg',
  'width': 194,
  'height': 256,
  'ann': {'bboxes': array([[ 19.885   ,  25.621248, 154.9575  , 209.41594 ],
          [  1.455   ,  55.47725 ,  99.78875 , 139.32826 ]], dtype=float32),
   'labels': array([1, 1])}},
 {'filename': '8ee9ac71d758e982.jpg',
  'width': 144,
  'height': 256,
  'ann': {'bboxes': array([[  8.73    ,  17.92    ,  66.24    , 200.53325 ],
          [ 65.34    ,  15.928832,  78.03    , 200.81792 ]], dtype=float32),
   'labels': array([1, 1])}}]