DeRhamComputation/heisenberg_covers/heisenberg_covers.sage

516 lines
21 KiB
Python
Raw Normal View History

2024-02-08 20:25:10 +01:00
class heisenberg_cover:
def __init__(self, C, list_of_fcts, branch_points = [], prec = 10):
self.quotient = C
self.functions = list_of_fcts
self.height = len(list_of_fcts)
F = C.base_ring
self.base_ring = F
p = C.characteristic
self.characteristic = p
self.prec = prec
#group acting
n = self.height
from itertools import product
pr = [list(GF(p)) for _ in range(n)]
self.group = [(a, b, c) for a in range(p) for b in range(p) for c in range(p)]
#########
f = C.polynomial
m = C.exponent
r = f.degree()
delta = GCD(m, r)
self.nb_of_pts_at_infty = delta
self.branch_points = list(range(delta)) + branch_points
Rxy.<x, y> = PolynomialRing(F, 2)
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
all_x_series = {}
all_y_series = {}
all_z_series = {}
all_dx_series = {}
all_jumps = {}
for pt in self.branch_points:
x_series = superelliptic_function(C, x).expansion(pt=pt, prec=prec)
y_series = superelliptic_function(C, y).expansion(pt=pt, prec=prec)
z_series = []
jumps = []
n = len(list_of_fcts)
list_of_power_series = [g.expansion(pt=pt, prec=prec) for g in list_of_fcts]
for j in range(n):
if j == 2:
list_of_power_series[j] += (z_series[0] - z_series[1])*list_of_power_series[1]
power_series = list_of_power_series[j]
jump, correction, t_old, z = artin_schreier_transform(power_series, prec = prec)
x_series = x_series(t = t_old)
y_series = y_series(t = t_old)
z_series = [zi(t = t_old) for zi in z_series]
z_series += [z]
jumps += [jump]
list_of_power_series = [g(t = t_old) for g in list_of_power_series]
all_jumps[pt] = jumps
all_x_series[pt] = x_series
all_y_series[pt] = y_series
all_z_series[pt] = z_series
all_dx_series[pt] = x_series.derivative()
self.jumps = all_jumps
self.x_series = all_x_series
self.y_series = all_y_series
self.z_series = all_z_series
self.dx_series = all_dx_series
##############
#Function field
variable_names = 'x, y'
for i in range(n):
variable_names += ', z' + str(i)
Rxyz = PolynomialRing(F, n+2, variable_names)
x, y = Rxyz.gens()[:2]
z = Rxyz.gens()[2:]
RxyzQ = FractionField(Rxyz)
self.fct_field = (RxyzQ, Rxyz, x, y, z)
self.x = heisenberg_function(self, x)
self.y = heisenberg_function(self, y)
self.z = [heisenberg_function(self, z[j]) for j in range(n)]
self.dx = heisenberg_form(self, 1)
self.one = heisenberg_function(self, 1)
def __repr__(self):
n = self.height
p = self.characteristic
if n==1:
return "(Z/p)-cover of " + str(self.quotient)+" with the equation:\n z^" + str(p) + " - z = " + str(self.functions[0])
result = "E(p^3)-cover of " + str(self.quotient)+" with the equations:\n"
for i in range(n):
if i !=2:
result += 'z' + str(i) + "^" + str(p) + " - z" + str(i) + " = " + str(self.functions[i]) + "\n"
else:
result += 'z2'+ "^" + str(p) + ' - z2 = ' + str(self.functions[2]) + ' + ' + '(z0 - z1) * (' + str(self.functions[1]) + ")"
return result
def genus(self):
jumps = self.jumps
gY = self.quotient.genus()
n = self.height
branch_pts = self.branch_points
p = self.characteristic
return p^n*gY + (p^n - 1)*(len(branch_pts) - 1) + sum(p^(n-j-1)*(jumps[pt][j]-1)*(p-1)/2 for j in range(n) for pt in branch_pts)
def exponent_of_different(self, place = 0):
jumps = self.jumps
n = self.height
delta = self.nb_of_pts_at_infty
p = self.characteristic
return sum(p^(n-j-1)*(jumps[place][j]+1)*(p-1) for j in range(n))
def exponent_of_different_prim(self, place = 0):
jumps = self.jumps
n = self.height
delta = self.nb_of_pts_at_infty
p = self.characteristic
return sum(p^(n-j-1)*(jumps[place][j])*(p-1) for j in range(n))
def holomorphic_differentials_basis(self, threshold = 8):
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
dx_series = self.dx_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = []
pr = [list(GF(p)) for _ in range(n)]
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion(pt=self.branch_points[0])
S += [(eta, eta_exp)]
forms = holomorphic_combinations(S)
print("next iteration")
for pt in self.branch_points:
for g in self.fiber(place = pt):
print("next iteration")
if pt != self.branch_points[0] or g != (0, 0, 0):
forms = [(omega, omega.group_action(g).expansion(pt=pt)) for omega in forms]
forms = holomorphic_combinations(forms)
return forms
2024-02-08 20:25:10 +01:00
if len(forms) < self.genus():
print("I haven't found all forms, only ", len(forms), " of ", self.genus())
return holomorphic_differentials_basis(self, threshold = threshold + 1)
2024-02-08 20:25:10 +01:00
if len(forms) > self.genus():
raise ValueError("Increase precision.")
return forms
def cartier_matrix(self, prec=50):
g = self.genus()
F = self.base_ring
M = matrix(F, g, g)
for i, omega in enumerate(self.holomorphic_differentials_basis()):
M[:, i] = vector(omega.cartier().coordinates())
return M
def at_most_poles(self, pole_order, threshold = 8):
""" Find fcts with pole order in infty's at most pole_order. Threshold gives a bound on powers of x in the function.
If you suspect that you haven't found all the functions, you may increase it."""
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
F = C.base_ring
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = []
RQxyz = FractionField(Rxyz)
pr = [list(GF(p)) for _ in range(n)]
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_function(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))*y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations_fcts(S, pole_order)
for i in range(delta):
for g in [(0, i, 0) for i in range(p)]:
if i!=0 or g != (0, 0, 0):
forms = [(omega, omega.expansion_at_infty(place = i)) for omega in forms]
forms = holomorphic_combinations_fcts(forms, pole_order)
2024-02-08 20:25:10 +01:00
return forms
def magical_element(self, threshold = 8):
list_of_elts = self.at_most_poles(self.exponent_of_different_prim(), threshold)
result = []
for a in list_of_elts:
if a.trace().function != 0:
result += [a]
return result
def pseudo_magical_element(self, threshold = 8):
list_of_elts = self.at_most_poles(self.exponent_of_different(), threshold)
result = []
for a in list_of_elts:
if a.trace().function != 0:
result += [a]
return result
def at_most_poles_forms(self, pole_order, threshold = 8):
"""Find forms with pole order in all the points at infty equal at most to pole_order. Threshold gives a bound on powers of x in the form.
2024-02-08 20:25:10 +01:00
If you suspect that you haven't found all the functions, you may increase it."""
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = []
RQxyz = FractionField(Rxyz)
pr = [list(GF(p)) for _ in range(n)]
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations_forms(S, pole_order)
for pt in self.branch_points[1:]:
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
forms = holomorphic_combinations_forms(forms, pole_order)
return forms
def uniformizer(self, place = 0):
'''Return uniformizer of curve self at place-th place at infinity.'''
p = self.characteristic
n = self.height
F = self.base_ring
RxyzQ, Rxyz, x, y, z = self.fct_field
fx = heisenberg_function(self, x)
z = [heisenberg_function(self, zi) for zi in z]
# We create a list of functions. We add there all variables...
list_of_fcts = [fx]+z
vfx = fx.valuation(place)
vz = [zi.valuation(place) for zi in z]
# Then we subtract powers of variables with the same valuation (so that 1/t^(kp) cancels) and add to this list.
for j1 in range(n):
for j2 in range(n):
if j1>j2:
a = gcd(vz[j1] , vz[j2])
vz1 = vz[j1]/a
vz2 = vz[j2]/a
for b in F:
if (z[j1]^(vz2) - b*z[j2]^(vz1)).valuation(place) > (z[j2]^(vz1)).valuation(place):
list_of_fcts += [z[j1]^(vz2) - b*z[j2]^(vz1)]
for j1 in range(n):
a = gcd(vz[j1], vfx)
vzj = vz[j1] /a
vfx = vfx/a
for b in F:
if (fx^(vzj) - b*z[j1]^(vfx)).valuation(place) > (z[j1]^(vfx)).valuation(place):
list_of_fcts += [fx^(vzj) - b*z[j1]^(vfx)]
#Finally, we check if on the list there are two elements with the same valuation.
for f1 in list_of_fcts:
for f2 in list_of_fcts:
d, a, b = xgcd(f1.valuation(place), f2.valuation(place))
if d == 1:
return f1^a*f2^b
raise ValueError("My method of generating fcts with relatively prime valuation failed.")
def ith_ramification_gp(self, i, place = 0):
'''Find ith ramification group at place at infty of nb place.'''
G = self.group
t = self.uniformizer(place)
Gi = [G[0]]
for g in G:
if g != G[0]:
tg = t.group_action(g)
v = (tg - t).valuation(place)
if v >= i+1:
Gi += [g]
return Gi
def ramification_jumps(self, place = 0):
'''Return list of lower ramification jumps at at place at infty of nb place.'''
G = self.group
ramification_jps = []
i = 0
while len(G) > 1:
Gi = self.ith_ramification_gp(i+1, place)
if len(Gi) < len(G):
ramification_jps += [i]
G = Gi
i+=1
return ramification_jps
def a_number(self):
g = self.genus()
return g - self.cartier_matrix().rank()
def cohomology_of_structure_sheaf_basis(self, holo_basis = 0, threshold = 8):
if holo_basis == 0:
holo_basis = self.holomorphic_differentials_basis(threshold = threshold)
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
result_fcts = []
V = VectorSpace(F,self.genus())
S = V.subspace([])
RQxyz = FractionField(Rxyz)
pr = [list(GF(p)) for _ in range(n)]
i = 0
while len(result_fcts) < self.genus():
for j in range(0, m):
for k in product(*pr):
f = heisenberg_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
f_products = [omega.serre_duality_pairing(f) for omega in holo_basis]
if vector(f_products) not in S:
S = S+V.subspace([V(f_products)])
result_fcts += [f]
i += 1
return result_fcts
def lift_to_de_rham(self, fct, threshold = 30):
'''Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
dx_series = self.dx_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [(fct.diffn(), fct.diffn().expansion_at_infty())]
pr = [list(GF(p)) for _ in range(n)]
holo = self.holomorphic_differentials_basis(threshold = threshold)
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_form(self, x^i*prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = heisenberg_holomorphic_combinations(S)
if len(forms) <= self.genus():
raise ValueError("Increase threshold!")
for omega in forms:
for a in F:
if (a*omega + fct.diffn()).is_regular_on_U0():
return a*omega + fct.diffn()
raise ValueError("Unknown.")
def de_rham_basis(self, holo_basis = 0, cohomology_basis = 0, threshold = 30):
if holo_basis == 0:
holo_basis = self.holomorphic_differentials_basis(threshold = threshold)
if cohomology_basis == 0:
cohomology_basis = self.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold)
result = []
for omega in holo_basis:
result += [heisenberg_cech(self, omega, heisenberg_function(self, 0))]
for f in cohomology_basis:
omega = self.lift_to_de_rham(f, threshold = threshold)
result += [heisenberg_cech(self, omega, f)]
return result
def stabilizer(self, place = 0):
result = []
for g in self.group:
flag = 1
for i in range(self.height):
if self.z[i].valuation(place = place) > 0:
fct = self.z[i]
elif self.z[i].valuation(place = place) < 0:
fct = self.one/self.z[i]
if fct.group_action(g).valuation(place = place) <= 0:
flag = 0
if flag:
result += [g]
return result
def fiber(self, place = 0):
'Gives representatives for the quotient G/G_P for given place. Those are in bijection with the fiber.'
result = [(0, 0, 0)]
p = self.characteristic
H = self.stabilizer(place = place)
for g in self.group:
flag = 1
for v in result:
if heisenberg_mult(g, heisenberg_inv(v, p), p) in H:
flag = 0
if flag:
result += [g]
return result
##############
def at_most_poles2(self, pole_orders, threshold = 8):
""" Find fcts with pole order in infty's at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places.
Threshold gives a bound on powers of x in the function. If you suspect that you haven't found all the functions, you may increase it."""
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
F = C.base_ring
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = []
RQxyz = FractionField(Rxyz)
pr = [list(GF(p)) for _ in range(n)]
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_function(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))*y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations_fcts(S, pole_orders[(0, (0, 0, 0))])
print('iteration')
for i in range(delta):
for g in self.fiber(place = i):
if i!=0 or g != (0, 0, 0):
print('iteration')
forms = [(omega, omega.group_action(g).expansion_at_infty(place = i)) for omega in forms]
forms = holomorphic_combinations_fcts(forms, pole_orders[(i, g)])
2024-06-10 19:55:49 +02:00
return forms
def at_most_poles_forms2(self, pole_orders, threshold = 8):
""" Find fcts with pole order in infty's at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places.
Threshold gives a bound on powers of x in the function. If you suspect that you haven't found all the functions, you may increase it."""
from itertools import product
x_series = self.x_series
y_series = self.y_series
z_series = self.z_series
delta = self.nb_of_pts_at_infty
p = self.characteristic
n = self.height
prec = self.prec
C = self.quotient
F = self.base_ring
m = C.exponent
r = C.polynomial.degree()
RxyzQ, Rxyz, x, y, z = self.fct_field
F = C.base_ring
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = []
RQxyz = FractionField(Rxyz)
pr = [list(GF(p)) for _ in range(n)]
for i in range(0, threshold*r):
for j in range(0, m):
for k in product(*pr):
eta = heisenberg_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations_forms(S, pole_orders[(0, (0, 0, 0))])
print('iteration')
for i in range(delta):
for g in self.fiber(place = i):
if i!=0 or g != (0, 0, 0):
print('iteration')
forms = [(omega, omega.group_action(g).expansion_at_infty(place = i)) for omega in forms]
forms = holomorphic_combinations_forms(forms, pole_orders[(i, g)])
2024-02-08 20:25:10 +01:00
return forms