DeRhamComputation/as_covers/group.sage

143 lines
4.4 KiB
Python
Raw Normal View History

2024-06-10 21:08:42 +02:00
class group:
2024-06-11 20:57:12 +02:00
def __init__(self, name, short_name, elts, one, mult, inv, gens):
2024-06-10 21:08:42 +02:00
self.name = name
self.elts = elts
self.one = one
self.mult = mult
self.inv = inv
self.order = len(self.elts)
self.gens = gens
2024-06-11 20:57:12 +02:00
self.short_name = short_name
2024-06-10 21:08:42 +02:00
def __repr__(self):
return self.name
def elt(self, a_tuple):
return group_elt(a_tuple, self)
def ONE(self):
return self.elt(self.one)
def GENS(self):
return [self.elt(aa) for aa in self.gens]
class group_elt:
def __init__(self, as_tuple, group):
self.group = group
self.as_tuple = as_tuple
def __repr__(self):
return str(self.as_tuple)
def __mul__(self, other):
result_as_tuple = self.group.mult(self.as_tuple, other.as_tuple)
return group_elt(result_as_tuple, self.group)
def __rmul__(self, other):
result_as_tuple = self.group.mult(self.as_tuple, other)
return group_elt(result_as_tuple, self.group)
2024-06-10 21:08:42 +02:00
def __neg__(self):
result_as_tuple = self.group.inv(self.as_tuple)
return group_elt(result_as_tuple, self.group)
def __pow__(self, m):
if m == 0:
return self.group.ONE()
if m == 1:
return self
if m == 2:
return self*self
if m < 0:
return -(self^(-m))
if m%2 == 1:
return (self^(m//2))^2*self
return (self^(m//2))^2
def __eq__(self, other):
return self.as_tuple == other.as_tuple
def cyclic_gp(p, n):
name = "cyclic group of order " + str(p) + "^" + str(n)
2024-06-11 20:57:12 +02:00
short_name = "Z/p^n"
2024-06-10 21:08:42 +02:00
elts = [i for i in range(p^n)]
one = 0
mult = lambda i1, i2: (i1 + i2) % (p ** n)
inv = lambda i: (-i) % (p ** n)
gens = [1]
2024-06-11 20:57:12 +02:00
gp = group(name, short_name, elts, one, mult, inv, gens)
2024-06-10 21:08:42 +02:00
return gp
def elementary_gp(p, n):
name = "(Z/" + str(p) + ")" + "^" + str(n)
2024-06-11 20:57:12 +02:00
short_name = name
2024-06-10 21:08:42 +02:00
pr = [list(GF(p)) for _ in range(n)]
from itertools import product
elts = []
for a in product(*pr):
elts += [tuple(a)]
2024-06-10 21:08:42 +02:00
one = elts[0]
mult = lambda i1, i2: tuple([(i1[j] + i2[j]) % p for j in range(n)])
inv = lambda i: tuple([(-i[j]) % p for j in range(n)])
2024-06-10 21:08:42 +02:00
gens = []
for i in range(n):
e = n*[0]
e[i] = 1
gens += [tuple(e)]
2024-06-11 20:57:12 +02:00
gp = group(name, short_name, elts, one, mult, inv, gens)
2024-06-10 21:08:42 +02:00
return gp
def heisenberg(p):
name = "Heisenberg group E(" + str(p) + "^3)"
2024-06-11 20:57:12 +02:00
short_name = "E(p^3)"
2024-06-10 21:08:42 +02:00
elts = [(i, j, k) for i in range(p) for j in range(p) for k in range(p)]
2024-06-12 18:13:49 +02:00
one = elts[0]
2024-06-10 21:50:09 +02:00
mult = lambda elt1, elt2 : ((elt1[0] + elt2[0])%p, (elt1[1] + elt2[1])%p, (-elt1[1]*elt2[0] + elt1[2] + elt2[2])%p)
2024-06-10 21:08:42 +02:00
inv = lambda elt : (p-elt[0], p-elt[1], (p - elt[2] - (p-elt[0])*(p-elt[1]))%p)
gens = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
2024-06-11 20:57:12 +02:00
gp = group(name, short_name, elts, one, mult, inv, gens)
2024-06-13 12:35:58 +02:00
return gp
def quaternion_mult(aa, bb):
result = [(aa[0] + bb[0] + 2*aa[1]*bb[0])%4, (aa[1]+bb[1])%4]
if result[1]%4 == 2 or result[1]%4 == 3:
result[0] = (result[0] + 2)%4
result[1] = (result[1] - 2)%4
return tuple(result)
def quaternion_inv(aa):
result = [((-1)^(aa[0]*aa[1])*(-aa[0]))%4, (-aa[1])%4]
if result[1]%4 == 2 or result[1]%4 == 3:
result[0] = (result[0] + 2)%4
result[1] = (result[1] - 2)%4
return tuple(result)
def quaternion_gp():
name = "Q8"
short_name = name
elts = [(i, j) for i in range(4) for j in range(2)]
mult = quaternion_mult
inv = quaternion_inv
gens = [(1, 0), (0, 1)]
one = (0, 0)
gp = group(name, short_name, elts, one, mult, inv, gens)
return gp
def hypoelementary_mult(p, m, b, A, B, C, D):
return ((A+C)%m, (b^C*B+D)%p)
def hypoelementary_inv(p, m, b, A, B):
return hypoelementary_mult(p, m, b, 0, p-B, m - A, 0)
def hypoelementary(p, m, b):
'''We want m | p-1 and b to be of order m in F_p.'''
name = "Hypoelementary group Z/"+str(p)+"⋊ Z/"+str(m)+", glued by character 1 -->" + str(b)
short_name = "Z/"+str(p)+"⋊ Z/"+str(m)
elts = [(i, j) for i in range(m) for j in range(p)]
mult = lambda elt1, elt2: hypoelementary_mult(p, m, b, elt1[0], elt1[1], elt2[0], elt2[1])
inv = lambda elt1 : hypoelementary_inv(p, m, b, elt1[0], elt1[1])
gens = [(1, 0), (0, 1)]
one = (0, 0)
gp = group(name, short_name, elts, one, mult, inv, gens)
2024-06-10 21:08:42 +02:00
return gp