143 lines
4.4 KiB
Python
143 lines
4.4 KiB
Python
class group:
|
|
def __init__(self, name, short_name, elts, one, mult, inv, gens):
|
|
self.name = name
|
|
self.elts = elts
|
|
self.one = one
|
|
self.mult = mult
|
|
self.inv = inv
|
|
self.order = len(self.elts)
|
|
self.gens = gens
|
|
self.short_name = short_name
|
|
|
|
def __repr__(self):
|
|
return self.name
|
|
|
|
def elt(self, a_tuple):
|
|
return group_elt(a_tuple, self)
|
|
|
|
def ONE(self):
|
|
return self.elt(self.one)
|
|
|
|
def GENS(self):
|
|
return [self.elt(aa) for aa in self.gens]
|
|
|
|
class group_elt:
|
|
def __init__(self, as_tuple, group):
|
|
self.group = group
|
|
self.as_tuple = as_tuple
|
|
|
|
def __repr__(self):
|
|
return str(self.as_tuple)
|
|
|
|
def __mul__(self, other):
|
|
result_as_tuple = self.group.mult(self.as_tuple, other.as_tuple)
|
|
return group_elt(result_as_tuple, self.group)
|
|
|
|
def __rmul__(self, other):
|
|
result_as_tuple = self.group.mult(self.as_tuple, other)
|
|
return group_elt(result_as_tuple, self.group)
|
|
|
|
def __neg__(self):
|
|
result_as_tuple = self.group.inv(self.as_tuple)
|
|
return group_elt(result_as_tuple, self.group)
|
|
|
|
def __pow__(self, m):
|
|
if m == 0:
|
|
return self.group.ONE()
|
|
if m == 1:
|
|
return self
|
|
if m == 2:
|
|
return self*self
|
|
if m < 0:
|
|
return -(self^(-m))
|
|
if m%2 == 1:
|
|
return (self^(m//2))^2*self
|
|
return (self^(m//2))^2
|
|
|
|
def __eq__(self, other):
|
|
return self.as_tuple == other.as_tuple
|
|
|
|
|
|
def cyclic_gp(p, n):
|
|
name = "cyclic group of order " + str(p) + "^" + str(n)
|
|
short_name = "Z/p^n"
|
|
elts = [i for i in range(p^n)]
|
|
one = 0
|
|
mult = lambda i1, i2: (i1 + i2) % (p ** n)
|
|
inv = lambda i: (-i) % (p ** n)
|
|
gens = [1]
|
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
|
return gp
|
|
|
|
def elementary_gp(p, n):
|
|
name = "(Z/" + str(p) + ")" + "^" + str(n)
|
|
short_name = name
|
|
pr = [list(GF(p)) for _ in range(n)]
|
|
from itertools import product
|
|
elts = []
|
|
for a in product(*pr):
|
|
elts += [tuple(a)]
|
|
one = elts[0]
|
|
mult = lambda i1, i2: tuple([(i1[j] + i2[j]) % p for j in range(n)])
|
|
inv = lambda i: tuple([(-i[j]) % p for j in range(n)])
|
|
gens = []
|
|
for i in range(n):
|
|
e = n*[0]
|
|
e[i] = 1
|
|
gens += [tuple(e)]
|
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
|
return gp
|
|
|
|
def heisenberg(p):
|
|
name = "Heisenberg group E(" + str(p) + "^3)"
|
|
short_name = "E(p^3)"
|
|
elts = [(i, j, k) for i in range(p) for j in range(p) for k in range(p)]
|
|
one = elts[0]
|
|
mult = lambda elt1, elt2 : ((elt1[0] + elt2[0])%p, (elt1[1] + elt2[1])%p, (-elt1[1]*elt2[0] + elt1[2] + elt2[2])%p)
|
|
inv = lambda elt : (p-elt[0], p-elt[1], (p - elt[2] - (p-elt[0])*(p-elt[1]))%p)
|
|
gens = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
|
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
|
return gp
|
|
|
|
def quaternion_mult(aa, bb):
|
|
result = [(aa[0] + bb[0] + 2*aa[1]*bb[0])%4, (aa[1]+bb[1])%4]
|
|
if result[1]%4 == 2 or result[1]%4 == 3:
|
|
result[0] = (result[0] + 2)%4
|
|
result[1] = (result[1] - 2)%4
|
|
return tuple(result)
|
|
|
|
def quaternion_inv(aa):
|
|
result = [((-1)^(aa[0]*aa[1])*(-aa[0]))%4, (-aa[1])%4]
|
|
if result[1]%4 == 2 or result[1]%4 == 3:
|
|
result[0] = (result[0] + 2)%4
|
|
result[1] = (result[1] - 2)%4
|
|
return tuple(result)
|
|
|
|
def quaternion_gp():
|
|
name = "Q8"
|
|
short_name = name
|
|
elts = [(i, j) for i in range(4) for j in range(2)]
|
|
mult = quaternion_mult
|
|
inv = quaternion_inv
|
|
gens = [(1, 0), (0, 1)]
|
|
one = (0, 0)
|
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
|
return gp
|
|
|
|
def hypoelementary_mult(p, m, b, A, B, C, D):
|
|
return ((A+C)%m, (b^C*B+D)%p)
|
|
|
|
def hypoelementary_inv(p, m, b, A, B):
|
|
return hypoelementary_mult(p, m, b, 0, p-B, m - A, 0)
|
|
|
|
def hypoelementary(p, m, b):
|
|
'''We want m | p-1 and b to be of order m in F_p.'''
|
|
name = "Hypoelementary group Z/"+str(p)+"⋊ Z/"+str(m)+", glued by character 1 -->" + str(b)
|
|
short_name = "Z/"+str(p)+"⋊ Z/"+str(m)
|
|
elts = [(i, j) for i in range(m) for j in range(p)]
|
|
mult = lambda elt1, elt2: hypoelementary_mult(p, m, b, elt1[0], elt1[1], elt2[0], elt2[1])
|
|
inv = lambda elt1 : hypoelementary_inv(p, m, b, elt1[0], elt1[1])
|
|
gens = [(1, 0), (0, 1)]
|
|
one = (0, 0)
|
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
|
return gp |