group and template
This commit is contained in:
parent
e05bf77824
commit
6fe120b690
99
as_covers/group.sage
Normal file
99
as_covers/group.sage
Normal file
@ -0,0 +1,99 @@
|
||||
class group:
|
||||
def __init__(self, name, elts, one, mult, inv, gens, as_gens):
|
||||
self.name = name
|
||||
self.elts = elts
|
||||
self.one = one
|
||||
self.mult = mult
|
||||
self.inv = inv
|
||||
self.order = len(self.elts)
|
||||
self.gens = gens
|
||||
self.as_gens = as_gens
|
||||
|
||||
def __repr__(self):
|
||||
return self.name
|
||||
|
||||
def elt(self, a_tuple):
|
||||
return group_elt(a_tuple, self)
|
||||
|
||||
def ONE(self):
|
||||
return self.elt(self.one)
|
||||
|
||||
def GENS(self):
|
||||
return [self.elt(aa) for aa in self.gens]
|
||||
|
||||
class group_elt:
|
||||
def __init__(self, as_tuple, group):
|
||||
self.group = group
|
||||
self.as_tuple = as_tuple
|
||||
self.as_gens = self.group.as_gens(as_tuple)
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.as_tuple)
|
||||
|
||||
def __mul__(self, other):
|
||||
result_as_tuple = self.group.mult(self.as_tuple, other.as_tuple)
|
||||
return group_elt(result_as_tuple, self.group)
|
||||
|
||||
def __neg__(self):
|
||||
result_as_tuple = self.group.inv(self.as_tuple)
|
||||
return group_elt(result_as_tuple, self.group)
|
||||
|
||||
def __pow__(self, m):
|
||||
if m == 0:
|
||||
return self.group.ONE()
|
||||
if m == 1:
|
||||
return self
|
||||
if m == 2:
|
||||
return self*self
|
||||
if m < 0:
|
||||
return -(self^(-m))
|
||||
if m%2 == 1:
|
||||
return (self^(m//2))^2*self
|
||||
return (self^(m//2))^2
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.as_tuple == other.as_tuple
|
||||
|
||||
|
||||
def cyclic_gp(p, n):
|
||||
name = "cyclic group of order " + str(p) + "^" + str(n)
|
||||
elts = [i for i in range(p^n)]
|
||||
one = 0
|
||||
mult = lambda i1, i2: (i1 + i2) % (p ** n)
|
||||
inv = lambda i: (-i) % (p ** n)
|
||||
gens = [1]
|
||||
as_gens = lambda i : [[0, i]]
|
||||
gp = group(name, elts, one, mult, inv, gens, as_gens)
|
||||
return gp
|
||||
|
||||
def elementary_gp(p, n):
|
||||
name = "(Z/" + str(p) + ")" + "^" + str(n)
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
from itertools import product
|
||||
elts = []
|
||||
for a in product(*pr):
|
||||
elts += [a]
|
||||
one = elts[0]
|
||||
mult = lambda i1, i2: [(i1[j] + i2[j]) % p for j in range(n)]
|
||||
inv = lambda i: [(-i[j]) % p for j in range(n)]
|
||||
gens = []
|
||||
for i in range(n):
|
||||
e = n*[0]
|
||||
e[i] = 1
|
||||
gens += [tuple(e)]
|
||||
as_gens = lambda i : [[j, i[j]] for j in range(n)]
|
||||
gp = group(name, elts, one, mult, inv, gens, as_gens)
|
||||
return gp
|
||||
|
||||
|
||||
|
||||
def heisenberg(p):
|
||||
name = "Heisenberg group E(" + str(p) + "^3)"
|
||||
elts = [(i, j, k) for i in range(p) for j in range(p) for k in range(p)]
|
||||
one = 0
|
||||
mult = lambda elt1, elt2 : ((elt1[0] + elt2[0])%p, (elt1[1] + elt2[1])%p, (-elt1[0]*elt2[1] + elt1[2] + elt2[2])%p)
|
||||
inv = lambda elt : (p-elt[0], p-elt[1], (p - elt[2] - (p-elt[0])*(p-elt[1]))%p)
|
||||
gens = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
|
||||
as_gens = lambda elt : [[0, elt[0]], [1, elt[1]], [2, elt[2]]]
|
||||
gp = group(name, elts, one, mult, inv, gens, as_gens)
|
||||
return gp
|
37
as_covers/template.sage
Normal file
37
as_covers/template.sage
Normal file
@ -0,0 +1,37 @@
|
||||
class template:
|
||||
'''Template of a p-group cover'''
|
||||
def __init__(self, height, field, group, fcts, gp_action):
|
||||
self.height = height
|
||||
self.group = group
|
||||
self.fcts = fcts #RHSs of the Artin-Schreier equations
|
||||
self.gp_action = gp_action #action of the generators of the group on z[i]'s
|
||||
self.field = field
|
||||
n = height
|
||||
variable_names = ''
|
||||
for i in range(n):
|
||||
variable_names += 'z'+str(i)+','
|
||||
for i in range(n):
|
||||
variable_names += 'f'+str(i)
|
||||
if i!=n-1:
|
||||
variable_names += ','
|
||||
R = PolynomialRing(field, 2*n, variable_names)
|
||||
z = R.gens()[:n]
|
||||
f = R.gens()[n:]
|
||||
|
||||
def elementary_template(p, n):
|
||||
group = elementary_gp(p, n)
|
||||
field = GF(p)
|
||||
variable_names = ''
|
||||
for i in range(n):
|
||||
variable_names += 'z'+str(i)+','
|
||||
for i in range(n):
|
||||
variable_names += 'f'+str(i)
|
||||
if i!=n-1:
|
||||
variable_names += ','
|
||||
R = PolynomialRing(field, 2*n, variable_names)
|
||||
z = R.gens()[:n]
|
||||
f = R.gens()[n:]
|
||||
height = n
|
||||
fcts = [f[i] for i in range(n)]
|
||||
gp_action = [[z[j] + (i == j) for j in range(n)] for i in range(n)]
|
||||
return template(height, field, group, fcts, gp_action)
|
Loading…
Reference in New Issue
Block a user