trying to fix superelliptic cech coordinates
This commit is contained in:
parent
fc5810d546
commit
85b0edd5d7
@ -84,7 +84,6 @@ class as_form:
|
||||
def coordinates(self, basis = 0):
|
||||
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
||||
self = self.reduce()
|
||||
print(self)
|
||||
C = self.curve
|
||||
if basis == 0:
|
||||
basis = C.holomorphic_differentials_basis()
|
||||
@ -94,7 +93,6 @@ class as_form:
|
||||
denom = LCM([denominator(omega.form) for omega in basis])
|
||||
basis = [denom*omega for omega in basis]
|
||||
self_with_no_denominator = denom*self
|
||||
print(denom, basis, self_with_no_denominator)
|
||||
return linear_representation_polynomials(Rxyz(self_with_no_denominator.form), [Rxyz(omega.form) for omega in basis])
|
||||
|
||||
def trace(self, super=True):
|
||||
|
166
drafty/mumford_curve.sage
Normal file
166
drafty/mumford_curve.sage
Normal file
@ -0,0 +1,166 @@
|
||||
def mumford_gp(p):
|
||||
'''We want m | p-1 and b to be of order m in F_p.'''
|
||||
name = "Mumford group (Z/"+str(p)+")^2⋊ D"+str(p-1)
|
||||
short_name = "(Z/"+str(p)+")^2 ⋊ D"+str(p-1)
|
||||
elts = [(i, j, s, t) for i in range(p) for j in range(p) for s in range(1) for t in range(p-1)]
|
||||
mult = lambda elt1, elt2: (0, 0, 0, 0)
|
||||
inv = lambda elt1 : (0, 0, 0, 0)
|
||||
gens = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0,0,0,1)]
|
||||
one = (0, 0, 0, 0)
|
||||
gp = group(name, short_name, elts, one, mult, inv, gens)
|
||||
return gp
|
||||
|
||||
def mumford_template(p):
|
||||
group = mumford_gp(p)
|
||||
field = GF(p)
|
||||
n = 2
|
||||
variable_names = ''
|
||||
for i in range(n):
|
||||
variable_names += 'z'+str(i)+','
|
||||
for i in range(n):
|
||||
variable_names += 'f'+str(i) + ','
|
||||
variable_names += 'x, y'
|
||||
R = PolynomialRing(field, 2*n+2, variable_names)
|
||||
z = R.gens()[:n]
|
||||
f = R.gens()[n:]
|
||||
x = R.gens()[-2]
|
||||
y = R.gens()[-1]
|
||||
height = n
|
||||
fcts = [x + y, x - y]
|
||||
gp_action = [[z[j] + (i == j) for j in range(n)]+[x, y] for i in range(n)]
|
||||
gp_action += [[z[1], z[0], -x, y]]
|
||||
d = field(primitive_root(p))
|
||||
gp_action += [[d*z[0], d^(-1)*z[1], 1/d*(y+x) - d*(y-x), 1/d*(y+x) + d*(y-x)]]
|
||||
return template(height, field, group, fcts, gp_action)
|
||||
|
||||
def mumford_cover(p, prec=10):
|
||||
field = GF(p)
|
||||
R.<x> = PolynomialRing(field)
|
||||
C = superelliptic(x^2 + 1, 2)
|
||||
return as_cover(C, mumford_template(p), [C.x, C.x], branch_points = [], prec = prec)
|
||||
|
||||
ASM = mumford_cover(3, prec = 400)
|
||||
|
||||
|
||||
###############
|
||||
###############
|
||||
def metacyclic_gp(p, c):
|
||||
name = "metacyclic group Z/"+str(p)+"⋊ Z/"+str(c)
|
||||
short_name = "Z/"+str(p)+" ⋊ Z/"+str(c)
|
||||
elts = [(i, j) for i in range(p) for j in range(c)]
|
||||
mult = lambda elt1, elt2: (0, 0)
|
||||
inv = lambda elt1 : (0, 0)
|
||||
gens = [(1, 0), (0, 1)]
|
||||
one = (0, 0)
|
||||
gp = group(name, short_name, elts, one, mult, inv, gens)
|
||||
return gp
|
||||
|
||||
def metacyclic_template(p, m, nn):
|
||||
group = metacyclic_gp(p, m*(p-1))
|
||||
N = Integers(m*(p-1))(p).multiplicative_order()
|
||||
field.<a> = GF(p^N)
|
||||
zeta = a^((p^N - 1)/((p-1)*m))
|
||||
n = 1
|
||||
variable_names = ''
|
||||
for i in range(n):
|
||||
variable_names += 'z'+str(i)+','
|
||||
for i in range(n):
|
||||
variable_names += 'f'+str(i) + ','
|
||||
variable_names += 'x, y'
|
||||
R = PolynomialRing(field, 2*n+2, variable_names)
|
||||
z = R.gens()[:n]
|
||||
f = R.gens()[n:]
|
||||
x = R.gens()[-2]
|
||||
y = R.gens()[-1]
|
||||
height = n
|
||||
fcts = [x]
|
||||
gp_action = [[z[j] + (i == j) for j in range(n)]+[x, y] for i in range(n)]
|
||||
gp_action += [[zeta^m * z[0], zeta^m * x, zeta * y]]
|
||||
return template(height, field, group, fcts, gp_action)
|
||||
|
||||
def metacyclic_cover(p, m, nn, prec=10):
|
||||
N = Integers(m*(p-1))(p).multiplicative_order()
|
||||
field.<a> = GF(p^N)
|
||||
R.<x> = PolynomialRing(field)
|
||||
C = superelliptic(sum(x^(p^i) for i in range(0, nn)), m)
|
||||
return as_cover(C, metacyclic_template(p, m, nn), [C.x], branch_points = [], prec = prec)
|
||||
|
||||
p = 3
|
||||
m = 2
|
||||
nn = 2
|
||||
N = Integers(m*(p-1))(p).multiplicative_order()
|
||||
field.<a> = GF(p^N)
|
||||
zeta = a^((p^N - 1)/((p-1)*m))
|
||||
AS = metacyclic_cover(p, m, nn, prec=100)
|
||||
Bh = AS.holomorphic_differentials_basis(threshold = 30)
|
||||
Bs = AS.cohomology_of_structure_sheaf_basis(threshold = 30)
|
||||
BdR = AS.de_rham_basis(threshold = 30)
|
||||
print(Bh[2].group_action((1, 0)).coordinates(basis = Bh))
|
||||
|
||||
|
||||
#H = CyclicPermutationGroup(4)
|
||||
|
||||
#alpha = PermutationGroupMorphism(A,A,[A.gens()[0]^3*A.gens()[1],A.gens()[1]])
|
||||
|
||||
#phi = [[(1,2)],[alpha]]
|
||||
|
||||
p = 3
|
||||
m = 2
|
||||
nn = 2
|
||||
N = Integers(m*(p-1))(p).multiplicative_order()
|
||||
field.<a> = GF(p^N)
|
||||
zeta = a^((p^N - 1)/((p-1)*m))
|
||||
|
||||
def gp_action(fct, elt):
|
||||
if elt == (1, 0):
|
||||
if isinstance(fct, superelliptic_function):
|
||||
f = fct.function
|
||||
C = fct.curve
|
||||
Fxy, Rxy, x, y = C.fct_field
|
||||
f = f.subs({x: x+1, y: y})
|
||||
return superelliptic_function(C, f)
|
||||
|
||||
if isinstance(fct, superelliptic_form):
|
||||
f = fct.form
|
||||
C = fct.curve
|
||||
Fxy, Rxy, x, y = C.fct_field
|
||||
f = f.subs({x: x+1, y: y})
|
||||
return superelliptic_form(C, f)
|
||||
|
||||
if isinstance(fct, superelliptic_cech):
|
||||
omega = fct.omega0
|
||||
ff = fct.f
|
||||
C = fct.curve
|
||||
return superelliptic_cech(C, gp_action(omega, elt), gp_action(ff, elt))
|
||||
if elt == (0, 1):
|
||||
if isinstance(fct, superelliptic_function):
|
||||
f = fct.function
|
||||
C = fct.curve
|
||||
Fxy, Rxy, x, y = C.fct_field
|
||||
f = f.subs({x : zeta^m*x, y:zeta*y})
|
||||
return superelliptic_function(C, f)
|
||||
|
||||
if isinstance(fct, superelliptic_form):
|
||||
f = fct.form
|
||||
C = fct.curve
|
||||
Fxy, Rxy, x, y = C.fct_field
|
||||
f = f.subs({x : zeta^m*x, y:zeta*y})
|
||||
return superelliptic_form(C, f*zeta^m)
|
||||
|
||||
if isinstance(fct, superelliptic_cech):
|
||||
omega = fct.omega0
|
||||
ff = fct.f
|
||||
C = fct.curve
|
||||
return superelliptic_cech(C, gp_action(omega, elt), gp_action(ff, elt))
|
||||
|
||||
|
||||
superelliptic_function.group_action = gp_action
|
||||
superelliptic_form.group_action = gp_action
|
||||
superelliptic_cech.group_action = gp_action
|
||||
|
||||
R.<x> = PolynomialRing(field)
|
||||
C = superelliptic(x^(p^nn) - x, m)
|
||||
Bh = C.holomorphic_differentials_basis()
|
||||
Bs = C.cohomology_of_structure_sheaf_basis()
|
||||
BdR = C.de_rham_basis()
|
||||
mat = as_group_action_matrices(field, BdR, [(1, 0), (0, 1)], BdR)
|
@ -38,7 +38,8 @@ class superelliptic_cech:
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
return superelliptic_cech(C, superelliptic_form(C, Rx(0)), superelliptic_function(C, fct^p))
|
||||
|
||||
def coordinates(self):
|
||||
def coordinates(self, basis = 0):
|
||||
print('coord', self, self.omega8.valuation())
|
||||
C = self.curve
|
||||
F = C.base_ring
|
||||
m = C.exponent
|
||||
@ -46,7 +47,8 @@ class superelliptic_cech:
|
||||
Fx = FractionField(Rx)
|
||||
FxRy.<y> = PolynomialRing(Fx)
|
||||
g = C.genus()
|
||||
basis = C.de_rham_basis()
|
||||
if basis == 0:
|
||||
basis = C.de_rham_basis()
|
||||
|
||||
omega = self.omega0
|
||||
fct = self.f
|
||||
@ -55,6 +57,7 @@ class superelliptic_cech:
|
||||
return vector((2*g)*[0])
|
||||
|
||||
if fct.function == Rx(0) and omega.form != Rx(0):
|
||||
print('A')
|
||||
result = list(omega.coordinates()) + g*[0]
|
||||
result = vector([F(a) for a in result])
|
||||
return result
|
||||
@ -66,9 +69,11 @@ class superelliptic_cech:
|
||||
for i in range(g, 2*g):
|
||||
aux -= coord[i]*basis[i]
|
||||
aux_f = decomposition_g0_g8(aux.f)[0]
|
||||
print('aux_f', aux_f, 'aux.f', aux.f)
|
||||
aux.omega0 -= aux_f.diffn()
|
||||
aux.f = 0*C.x
|
||||
aux.omega8 = aux.omega0
|
||||
print('B', aux)
|
||||
return coord + aux.coordinates()
|
||||
|
||||
def is_cocycle(self):
|
||||
|
@ -92,27 +92,37 @@ class superelliptic:
|
||||
f = self.polynomial
|
||||
m = self.exponent
|
||||
r = f.degree()
|
||||
genus = self.genus()
|
||||
delta = GCD(r, m)
|
||||
F = self.base_ring
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Fxy = FractionField(Rxy)
|
||||
basis_holo = self.holomorphic_differentials_basis()
|
||||
basis = []
|
||||
basis = 2*genus*[0]
|
||||
index = 0
|
||||
#First g_X elements of basis are holomorphic differentials.
|
||||
for k in range(0, len(basis_holo)):
|
||||
basis += [superelliptic_cech(self, basis_holo[k], superelliptic_function(self, 0))]
|
||||
basis[index] = superelliptic_cech(self, basis_holo[k], superelliptic_function(self, 0))
|
||||
index += 1
|
||||
|
||||
## Next elements do not come from holomorphic differentials.
|
||||
t = len(basis)
|
||||
degrees0 = {}
|
||||
degrees1 = {}
|
||||
degrees = self.degrees_holomorphic_differentials()
|
||||
degrees_inv = {b:a for a, b in degrees.items()}
|
||||
for j in range(1, m):
|
||||
for i in range(1, r):
|
||||
if (r*(m-j) - m*i >= delta):
|
||||
#########
|
||||
index = degrees_inv[(i-1, m-j)]
|
||||
fct = superelliptic_function(self, Fxy(m*y^(m-j)/x^i))
|
||||
constant = self.holomorphic_differentials_basis()[index].serre_duality_pairing(fct)
|
||||
#######
|
||||
s = Rx(m-j)*Rx(x)*Rx(f.derivative()) - Rx(m)*Rx(i)*f
|
||||
psi = Rx(cut(s, i))
|
||||
basis += [superelliptic_cech(self, superelliptic_form(self, Fxy(psi/y^j)), superelliptic_function(self, Fxy(m*y^(m-j)/x^i)))]
|
||||
basis[index+genus] = 1/constant*superelliptic_cech(self, superelliptic_form(self, Fxy(psi/y^j)), superelliptic_function(self, Fxy(m*y^(m-j)/x^i)))
|
||||
degrees0[t] = (psi.degree(), j)
|
||||
degrees1[t] = (-i, m-j)
|
||||
t += 1
|
||||
@ -216,14 +226,20 @@ class superelliptic:
|
||||
r = f.degree()
|
||||
F = self.base_ring
|
||||
delta = self.nb_of_pts_at_infty
|
||||
g = self.genus()
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Fxy = FractionField(Rxy)
|
||||
basis = []
|
||||
basis = g*[0]
|
||||
degrees = self.degrees_holomorphic_differentials()
|
||||
degrees_inv = {b:a for a, b in degrees.items()}
|
||||
for j in range(1, m):
|
||||
for i in range(1, r):
|
||||
if (r*(m-j) - m*i >= delta):
|
||||
basis += [superelliptic_function(self, Fxy(m*y^(m-j)/x^i))]
|
||||
index = degrees_inv[(i-1, m-j)]
|
||||
fct = superelliptic_function(self, Fxy(m*y^(m-j)/x^i))
|
||||
constant = self.holomorphic_differentials_basis()[index].serre_duality_pairing(fct)
|
||||
basis[index] = 1/constant*fct
|
||||
return basis
|
||||
|
||||
def uniformizer(self):
|
||||
|
Loading…
Reference in New Issue
Block a user