as symmetric power basis

This commit is contained in:
jgarnek 2024-01-22 16:10:03 +00:00
parent 100e711512
commit f37c3a4ede
3 changed files with 137 additions and 21 deletions

View File

@ -135,11 +135,11 @@ class as_cover:
eta_exp = eta.expansion(pt=self.branch_points[0])
S += [(eta, eta_exp)]
forms = holomorphic_combinations(S)
forms = as_holomorphic_combinations(S)
for pt in self.branch_points[1:]:
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
forms = holomorphic_combinations(forms)
forms = as_holomorphic_combinations(forms)
if len(forms) < self.genus():
print("I haven't found all forms, only ", len(forms), " of ", self.genus())
@ -376,7 +376,7 @@ class as_cover:
eta = as_form(self, x^i*prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations(S)
forms = as_holomorphic_combinations(S)
if len(forms) <= self.genus():
raise ValueError("Increase threshold!")
for omega in forms:
@ -398,7 +398,7 @@ class as_cover:
result += [as_cech(self, omega, f)]
return result
def holomorphic_combinations(S):
def as_holomorphic_combinations(S):
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
C_AS = S[0][0].curve
p = C_AS.characteristic

View File

@ -8,7 +8,7 @@ class as_polyform:
return as_polyform(self.form + other.form, self.mult)
def __repr__(self):
return str(self.form) + ' dx⊗' + str(self.mult)
return '(' + str(self.form) + ') dx⊗' + str(self.mult)
def expansion_at_infty(self):
return self.form.expansion_at_infty()*(self.curve.dx.expansion_at_infty())^(self.mult)
@ -30,39 +30,76 @@ class as_polyform:
def as_holo_polydifferentials_basis(AS, mult, threshold = 8):
v = AS.dx.valuation()
result = AS.at_most_poles(mult*v, threshold=threshold)
return [as_polyform(omega, mult) for omega in result]
result = [as_polyform(omega, mult) for omega in result]
if mult == 1 and len(result) < AS.genus():
raise ValueError('Increase threshold, not all forms found.')
if mult > 1 and len(result) < (2*mult - 1)*(AS.genus() - 1):
raise ValueError('Increase threshold, not all forms found.')
return result
as_cover.holo_polydifferentials_basis = as_holo_polydifferentials_basis
def as_canonical_ideal(AS, threshold=8):
def as_symmetric_power_basis(AS, n, threshold = 8):
g = AS.genus()
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
from itertools import product
indices = [list(range(g)) for i in range(n)]
indices_nonrepeating = []
for i in product(*indices):
if non_decreasing(i):
indices_nonrepeating += [i]
result = []
for i in indices_nonrepeating:
tensor_form = [as_function(AS, B0[i[j]].form) for j in range(n)]
tensor_form2 = [B0[i[j]] for j in range(n)]
print(hash(tuple(tensor_form)))
print([tensor_form], tuple(tensor_form))
aux_dict = {}
aux_dict[tuple(list(tensor_form))] = 1
print(aux_dict)
result += [as_symmetric_product_forms([tensor_form], aux_dict)]
print(binomial(g + n - 1, n), len(result))
return result
def as_canonical_ideal(AS, n, threshold=8):
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
F = AS.base_ring
g = AS.genus()
B1 = [(B0[i], B0[j]) for i in range(g) for j in range(g) if i <= j]
B2 = AS.holo_polydifferentials_basis(2, threshold = threshold)
RxyzQ, Rxyz, x, y, z = AS.fct_field
from itertools import product
#B1 = as_symmetric_power_basis(AS, n, threshold = 8)
B1 = [[B0[i[j]] for j in range(n)] for i in product(*indices)]
B2 = AS.holo_polydifferentials_basis(n, threshold = threshold)
g = AS.genus()
r = len(B2)
M = matrix(F, g^2, r)
M = matrix(F, len(B1), r)
for i in range(0, len(B1)):
(a, b) = B1[i]
c = as_function(AS, a.form*b.form)
atuple = B1[i]
c = Rxyz(1)
for a in atuple:
c = c*a.form
c = as_reduction(AS, c)
c = as_function(AS, c)
c = as_polyform(c, 2)
c = as_polyform(c, n)
#return M, c.coordinates(basis=B2)
M[i, :] = vector(c.coordinates(basis=B2))
K = M.kernel().basis()
result = []
for v in K:
coeffs = {b : 0 for b in B1}
coeffs = {tuple(b) : 0 for b in B1}
for i in range(r):
if v[i] != 0:
coeffs[B1[i]] += v[i]
result += [as_tensor_product_forms(B1, coeffs)]
coeffs[tuple(B1[i])] += v[i]
result += [as_symmetric_product_forms(B1, coeffs)]
return result
as_cover.canonical_ideal = as_canonical_ideal
def as_canonical_ideal_polynomials(AS, n, threshold=8):
return [a.polynomial() for a in AS.canonical_ideal(n, threshold=threshold)]
as_cover.canonical_ideal_polynomials = as_canonical_ideal_polynomials
class as_tensor_product_forms:
def __init__(self, pairs_of_forms, coeffs):
self.pairs = pairs_of_forms
@ -106,4 +143,83 @@ class as_tensor_product_forms:
elt1 = [p^n - a for a in elt]
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
class as_symmetric_product_forms:
def __init__(self, tuples_of_forms, coeffs):
self.n = len(tuples_of_forms[0])
self.tuples = tuples_of_forms
self.coeffs = coeffs #dictionary
self.curve = tuples_of_forms[0][0].curve
def coordinates(self, basis = 0):
AS = self.curve
g = AS.genus()
F = AS.base_ring
if basis == 0:
basis = AS.holomorphic_differentials_basis()
from itertools import product
indices = [list(range(g)) for i in range(self.n)]
result = {i : 0 for i in product(*indices)}
for atuple in self.tuples:
coors = [omega.coordinates(basis = basis) for omega in atuple]
for i in product(*indices):
aux_product = 1
for j in range(n):
aux_product *= coors[j][i[j]]
result[i] += self.coeffs[tuple(atuple)]*aux_product
return result
def __repr__(self):
result = ''
for atuple in self.tuples:
if self.coeffs[tuple(atuple)] !=0:
result += str(self.coeffs[tuple(atuple)]) + ' * '
for j in range(self.n):
result += "(" + str(atuple[j]) + ")"
if j != self.n-1:
result + ''
result += ' + '
return result
def multiply(self):
n = self.n
AS = self.curve
RxyzQ, Rxyz, x, y, z = AS.fct_field
result = as_polyform(0*AS.x, n)
for atuple in self.tuples:
aux_product = Rxyz(1)
for fct in atuple:
aux_product = aux_product * fct.form
aux_product = as_function(AS, aux_product)
result += as_polyform(self.coeffs[tuple(atuple)]*aux_product, n)
return result
def polynomial(self):
AS = self.curve
F = AS.base_ring
g = AS.genus()
M = self.coordinates()
n = self.n
Rg = PolynomialRing(F, 'X', g)
X = Rg.gens()
from itertools import product
indices = [list(range(g)) for i in range(self.n)]
result = Rg(0)
for i in product(*indices):
aux_product = Rg(1)
for j in range(n):
aux_product *= X[i[j]]
result += M[i] * aux_product
return result
def group_action(self, elt):
p = self.base_ring.characteristic()
n = self.height
elt1 = [p^n - a for a in elt]
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
def non_decreasing(L):
return all(x<=y for x, y in zip(L, L[1:]))

View File

@ -137,11 +137,11 @@ class quaternion_cover:
eta_exp = eta.expansion(pt=self.branch_points[0])
S += [(eta, eta_exp)]
forms = holomorphic_combinations(S)
forms = quaternion_holomorphic_combinations(S)
for pt in self.branch_points[1:]:
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
forms = holomorphic_combinations(forms)
forms = quaternion_holomorphic_combinations(forms)
if len(forms) < self.genus():
print("I haven't found all forms, only ", len(forms), " of ", self.genus())
@ -378,7 +378,7 @@ class quaternion_cover:
eta = quaternion_form(self, x^i*prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
eta_exp = eta.expansion_at_infty()
S += [(eta, eta_exp)]
forms = holomorphic_combinations(S)
forms = quaternion_holomorphic_combinations(S)
if len(forms) <= self.genus():
raise ValueError("Increase threshold!")
for omega in forms:
@ -400,7 +400,7 @@ class quaternion_cover:
result += [quaternion_cech(self, omega, f)]
return result
def holomorphic_combinations(S):
def quaternion_holomorphic_combinations(S):
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
C_AS = S[0][0].curve
p = C_AS.characteristic