225 lines
8.4 KiB
Python
225 lines
8.4 KiB
Python
class as_polyform:
|
|
def __init__(self, form, mult):
|
|
self.form = form
|
|
self.curve = form.curve
|
|
self.mult = mult
|
|
|
|
def __add__(self, other):
|
|
return as_polyform(self.form + other.form, self.mult)
|
|
|
|
def __repr__(self):
|
|
return '(' + str(self.form) + ') dx⊗' + str(self.mult)
|
|
|
|
def expansion_at_infty(self):
|
|
return self.form.expansion_at_infty()*(self.curve.dx.expansion_at_infty())^(self.mult)
|
|
|
|
def coordinates(self, basis = 0):
|
|
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
|
AS = self.curve
|
|
if basis == 0:
|
|
basis = AS.holomorphic_differentials_basis()
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
|
|
# and sometimes basis elements have denominators. Thus we multiply by them.
|
|
denom = LCM([denominator(omega.form.function) for omega in basis])
|
|
basis = [denom*omega.form.function for omega in basis]
|
|
self_with_no_denominator = denom*self.form.function
|
|
return linear_representation_polynomials(Rxyz(self_with_no_denominator), [Rxyz(omega) for omega in basis])
|
|
|
|
|
|
def as_holo_polydifferentials_basis(AS, mult, threshold = 8):
|
|
v = AS.dx.valuation()
|
|
result = AS.at_most_poles(mult*v, threshold=threshold)
|
|
result = [as_polyform(omega, mult) for omega in result]
|
|
if mult == 1 and len(result) < AS.genus():
|
|
raise ValueError('Increase threshold, not all forms found.')
|
|
if mult > 1 and len(result) < (2*mult - 1)*(AS.genus() - 1):
|
|
raise ValueError('Increase threshold, not all forms found.')
|
|
return result
|
|
|
|
as_cover.holo_polydifferentials_basis = as_holo_polydifferentials_basis
|
|
|
|
def as_symmetric_power_basis(AS, n, threshold = 8):
|
|
g = AS.genus()
|
|
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(n)]
|
|
indices_nonrepeating = []
|
|
for i in product(*indices):
|
|
if non_decreasing(i):
|
|
indices_nonrepeating += [i]
|
|
result = []
|
|
for i in indices_nonrepeating:
|
|
tensor_form = [as_function(AS, B0[i[j]].form) for j in range(n)]
|
|
tensor_form2 = [B0[i[j]] for j in range(n)]
|
|
print(hash(tuple(tensor_form)))
|
|
print([tensor_form], tuple(tensor_form))
|
|
aux_dict = {}
|
|
aux_dict[tuple(list(tensor_form))] = 1
|
|
print(aux_dict)
|
|
result += [as_symmetric_product_forms([tensor_form], aux_dict)]
|
|
print(binomial(g + n - 1, n), len(result))
|
|
return result
|
|
|
|
def as_canonical_ideal(AS, n, threshold=8):
|
|
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
|
|
F = AS.base_ring
|
|
g = AS.genus()
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
from itertools import product
|
|
#B1 = as_symmetric_power_basis(AS, n, threshold = 8)
|
|
B1 = [[B0[i[j]] for j in range(n)] for i in product(*indices)]
|
|
B2 = AS.holo_polydifferentials_basis(n, threshold = threshold)
|
|
g = AS.genus()
|
|
r = len(B2)
|
|
M = matrix(F, len(B1), r)
|
|
for i in range(0, len(B1)):
|
|
atuple = B1[i]
|
|
c = Rxyz(1)
|
|
for a in atuple:
|
|
c = c*a.form
|
|
c = as_reduction(AS, c)
|
|
c = as_function(AS, c)
|
|
c = as_polyform(c, n)
|
|
#return M, c.coordinates(basis=B2)
|
|
M[i, :] = vector(c.coordinates(basis=B2))
|
|
K = M.kernel().basis()
|
|
result = []
|
|
for v in K:
|
|
coeffs = {tuple(b) : 0 for b in B1}
|
|
for i in range(r):
|
|
if v[i] != 0:
|
|
coeffs[tuple(B1[i])] += v[i]
|
|
result += [as_symmetric_product_forms(B1, coeffs)]
|
|
return result
|
|
|
|
as_cover.canonical_ideal = as_canonical_ideal
|
|
|
|
def as_canonical_ideal_polynomials(AS, n, threshold=8):
|
|
return [a.polynomial() for a in AS.canonical_ideal(n, threshold=threshold)]
|
|
|
|
as_cover.canonical_ideal_polynomials = as_canonical_ideal_polynomials
|
|
|
|
class as_tensor_product_forms:
|
|
def __init__(self, pairs_of_forms, coeffs):
|
|
self.pairs = pairs_of_forms
|
|
self.coeffs = coeffs #dictionary
|
|
self.curve = pairs_of_forms[0][0].curve
|
|
|
|
def coordinates(self, basis = 0):
|
|
AS = self.curve
|
|
g = AS.genus()
|
|
F = AS.base_ring
|
|
if basis == 0:
|
|
basis = AS.holomorphic_differentials_basis()
|
|
result = matrix(F, g, g)
|
|
for (omega1, omega2) in self.pairs:
|
|
c = omega1.coordinates(basis = basis)
|
|
d = omega2.coordinates(basis = basis)
|
|
for i in range(g):
|
|
for j in range(g):
|
|
result[i, j] += self.coeffs[(omega1, omega2)]*c[i]*d[j]
|
|
return result
|
|
|
|
def __repr__(self):
|
|
result = ''
|
|
for (omega1, omega2) in self.pairs:
|
|
if self.coeffs[(omega1, omega2)] !=0:
|
|
result += str(self.coeffs[(omega1, omega2)]) + ' * ' + str(omega1) + '⊗' + str(omega2) + ' + '
|
|
return result
|
|
|
|
def polynomial(self):
|
|
AS = self.curve
|
|
F = AS.base_ring
|
|
g = AS.genus()
|
|
M = self.coordinates()
|
|
Rg = PolynomialRing(F, 'X', g)
|
|
X = Rg.gens()
|
|
return sum(M[i, j] * X[i]*X[j] for i in range(g) for j in range(g))
|
|
|
|
def group_action(self, elt):
|
|
p = self.base_ring.characteristic()
|
|
n = self.height
|
|
elt1 = [p^n - a for a in elt]
|
|
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
|
|
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
|
|
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
|
|
|
|
class as_symmetric_product_forms:
|
|
def __init__(self, tuples_of_forms, coeffs):
|
|
self.n = len(tuples_of_forms[0])
|
|
self.tuples = tuples_of_forms
|
|
self.coeffs = coeffs #dictionary
|
|
self.curve = tuples_of_forms[0][0].curve
|
|
|
|
def coordinates(self, basis = 0):
|
|
AS = self.curve
|
|
g = AS.genus()
|
|
F = AS.base_ring
|
|
if basis == 0:
|
|
basis = AS.holomorphic_differentials_basis()
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(self.n)]
|
|
result = {i : 0 for i in product(*indices)}
|
|
for atuple in self.tuples:
|
|
coors = [omega.coordinates(basis = basis) for omega in atuple]
|
|
for i in product(*indices):
|
|
aux_product = 1
|
|
for j in range(n):
|
|
aux_product *= coors[j][i[j]]
|
|
result[i] += self.coeffs[tuple(atuple)]*aux_product
|
|
return result
|
|
|
|
def __repr__(self):
|
|
result = ''
|
|
for atuple in self.tuples:
|
|
if self.coeffs[tuple(atuple)] !=0:
|
|
result += str(self.coeffs[tuple(atuple)]) + ' * '
|
|
for j in range(self.n):
|
|
result += "(" + str(atuple[j]) + ")"
|
|
if j != self.n-1:
|
|
result + '⊗'
|
|
result += ' + '
|
|
return result
|
|
|
|
def multiply(self):
|
|
n = self.n
|
|
AS = self.curve
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
result = as_polyform(0*AS.x, n)
|
|
for atuple in self.tuples:
|
|
aux_product = Rxyz(1)
|
|
for fct in atuple:
|
|
aux_product = aux_product * fct.form
|
|
aux_product = as_function(AS, aux_product)
|
|
result += as_polyform(self.coeffs[tuple(atuple)]*aux_product, n)
|
|
return result
|
|
|
|
def polynomial(self):
|
|
AS = self.curve
|
|
F = AS.base_ring
|
|
g = AS.genus()
|
|
M = self.coordinates()
|
|
n = self.n
|
|
Rg = PolynomialRing(F, 'X', g)
|
|
X = Rg.gens()
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(self.n)]
|
|
result = Rg(0)
|
|
for i in product(*indices):
|
|
aux_product = Rg(1)
|
|
for j in range(n):
|
|
aux_product *= X[i[j]]
|
|
result += M[i] * aux_product
|
|
return result
|
|
|
|
def group_action(self, elt):
|
|
p = self.base_ring.characteristic()
|
|
n = self.height
|
|
elt1 = [p^n - a for a in elt]
|
|
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
|
|
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
|
|
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
|
|
|
|
def non_decreasing(L):
|
|
return all(x<=y for x, y in zip(L, L[1:])) |