Compare commits
2 Commits
f37c3a4ede
...
1891b447b6
Author | SHA1 | Date | |
---|---|---|---|
1891b447b6 | |||
9376f28100 |
@ -17,7 +17,7 @@ class as_polyform:
|
||||
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
||||
AS = self.curve
|
||||
if basis == 0:
|
||||
basis = AS.holomorphic_differentials_basis()
|
||||
basis = AS.holo_polydifferentials_basis(mult = self.mult)
|
||||
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
|
||||
# and sometimes basis elements have denominators. Thus we multiply by them.
|
||||
@ -50,15 +50,10 @@ def as_symmetric_power_basis(AS, n, threshold = 8):
|
||||
indices_nonrepeating += [i]
|
||||
result = []
|
||||
for i in indices_nonrepeating:
|
||||
tensor_form = [as_function(AS, B0[i[j]].form) for j in range(n)]
|
||||
tensor_form2 = [B0[i[j]] for j in range(n)]
|
||||
print(hash(tuple(tensor_form)))
|
||||
print([tensor_form], tuple(tensor_form))
|
||||
aux_dict = {}
|
||||
aux_dict[tuple(list(tensor_form))] = 1
|
||||
print(aux_dict)
|
||||
result += [as_symmetric_product_forms([tensor_form], aux_dict)]
|
||||
print(binomial(g + n - 1, n), len(result))
|
||||
tensor_form = [B0[i[j]] for j in range(n)]
|
||||
tensor_form = [1] + tensor_form
|
||||
result += [tensor_form]
|
||||
result = [as_symmetric_product_forms([a]) for a in result]
|
||||
return result
|
||||
|
||||
def as_canonical_ideal(AS, n, threshold=8):
|
||||
@ -67,30 +62,22 @@ def as_canonical_ideal(AS, n, threshold=8):
|
||||
g = AS.genus()
|
||||
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||
from itertools import product
|
||||
#B1 = as_symmetric_power_basis(AS, n, threshold = 8)
|
||||
B1 = [[B0[i[j]] for j in range(n)] for i in product(*indices)]
|
||||
B1 = as_symmetric_power_basis(AS, n, threshold = 8)
|
||||
B2 = AS.holo_polydifferentials_basis(n, threshold = threshold)
|
||||
g = AS.genus()
|
||||
r = len(B2)
|
||||
M = matrix(F, len(B1), r)
|
||||
for i in range(0, len(B1)):
|
||||
atuple = B1[i]
|
||||
c = Rxyz(1)
|
||||
for a in atuple:
|
||||
c = c*a.form
|
||||
c = as_reduction(AS, c)
|
||||
c = as_function(AS, c)
|
||||
c = as_polyform(c, n)
|
||||
c = B1[i].multiply()
|
||||
#return M, c.coordinates(basis=B2)
|
||||
M[i, :] = vector(c.coordinates(basis=B2))
|
||||
K = M.kernel().basis()
|
||||
result = []
|
||||
for v in K:
|
||||
coeffs = {tuple(b) : 0 for b in B1}
|
||||
for i in range(r):
|
||||
if v[i] != 0:
|
||||
coeffs[tuple(B1[i])] += v[i]
|
||||
result += [as_symmetric_product_forms(B1, coeffs)]
|
||||
kernel_vector = 0*B1[0]
|
||||
for i in range(len(v)):
|
||||
kernel_vector += v[i]*B1[i]
|
||||
result += [kernel_vector]
|
||||
return result
|
||||
|
||||
as_cover.canonical_ideal = as_canonical_ideal
|
||||
@ -100,61 +87,17 @@ def as_canonical_ideal_polynomials(AS, n, threshold=8):
|
||||
|
||||
as_cover.canonical_ideal_polynomials = as_canonical_ideal_polynomials
|
||||
|
||||
class as_tensor_product_forms:
|
||||
def __init__(self, pairs_of_forms, coeffs):
|
||||
self.pairs = pairs_of_forms
|
||||
self.coeffs = coeffs #dictionary
|
||||
self.curve = pairs_of_forms[0][0].curve
|
||||
|
||||
def coordinates(self, basis = 0):
|
||||
AS = self.curve
|
||||
g = AS.genus()
|
||||
F = AS.base_ring
|
||||
if basis == 0:
|
||||
basis = AS.holomorphic_differentials_basis()
|
||||
result = matrix(F, g, g)
|
||||
for (omega1, omega2) in self.pairs:
|
||||
c = omega1.coordinates(basis = basis)
|
||||
d = omega2.coordinates(basis = basis)
|
||||
for i in range(g):
|
||||
for j in range(g):
|
||||
result[i, j] += self.coeffs[(omega1, omega2)]*c[i]*d[j]
|
||||
return result
|
||||
|
||||
def __repr__(self):
|
||||
result = ''
|
||||
for (omega1, omega2) in self.pairs:
|
||||
if self.coeffs[(omega1, omega2)] !=0:
|
||||
result += str(self.coeffs[(omega1, omega2)]) + ' * ' + str(omega1) + '⊗' + str(omega2) + ' + '
|
||||
return result
|
||||
|
||||
def polynomial(self):
|
||||
AS = self.curve
|
||||
F = AS.base_ring
|
||||
g = AS.genus()
|
||||
M = self.coordinates()
|
||||
Rg = PolynomialRing(F, 'X', g)
|
||||
X = Rg.gens()
|
||||
return sum(M[i, j] * X[i]*X[j] for i in range(g) for j in range(g))
|
||||
|
||||
def group_action(self, elt):
|
||||
p = self.base_ring.characteristic()
|
||||
n = self.height
|
||||
elt1 = [p^n - a for a in elt]
|
||||
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
|
||||
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
|
||||
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
|
||||
|
||||
class as_symmetric_product_forms:
|
||||
def __init__(self, tuples_of_forms, coeffs):
|
||||
self.n = len(tuples_of_forms[0])
|
||||
self.tuples = tuples_of_forms
|
||||
self.coeffs = coeffs #dictionary
|
||||
self.curve = tuples_of_forms[0][0].curve
|
||||
def __init__(self, forms_and_coeffs):
|
||||
'''Elements of forms_and_coeffs are of the form [coeff, form1, ..., formn]'''
|
||||
self.n = len(forms_and_coeffs[0]) - 1
|
||||
self.tuples = forms_and_coeffs
|
||||
self.curve = forms_and_coeffs[0][1].curve
|
||||
|
||||
def coordinates(self, basis = 0):
|
||||
AS = self.curve
|
||||
g = AS.genus()
|
||||
n = self.n
|
||||
F = AS.base_ring
|
||||
if basis == 0:
|
||||
basis = AS.holomorphic_differentials_basis()
|
||||
@ -162,26 +105,39 @@ class as_symmetric_product_forms:
|
||||
indices = [list(range(g)) for i in range(self.n)]
|
||||
result = {i : 0 for i in product(*indices)}
|
||||
for atuple in self.tuples:
|
||||
coors = [omega.coordinates(basis = basis) for omega in atuple]
|
||||
coors = [omega.coordinates(basis = basis) for omega in atuple[1:]]
|
||||
for i in product(*indices):
|
||||
aux_product = 1
|
||||
for j in range(n):
|
||||
aux_product *= coors[j][i[j]]
|
||||
result[i] += self.coeffs[tuple(atuple)]*aux_product
|
||||
result[i] += atuple[0]*aux_product
|
||||
return result
|
||||
|
||||
def __repr__(self):
|
||||
result = ''
|
||||
for atuple in self.tuples:
|
||||
if self.coeffs[tuple(atuple)] !=0:
|
||||
result += str(self.coeffs[tuple(atuple)]) + ' * '
|
||||
for j in range(self.n):
|
||||
if atuple[0] !=0:
|
||||
result += str(atuple[0]) + ' * '
|
||||
for j in range(1, self.n+1):
|
||||
result += "(" + str(atuple[j]) + ")"
|
||||
if j != self.n-1:
|
||||
if j != self.n:
|
||||
result + '⊗'
|
||||
result += ' + '
|
||||
return result
|
||||
|
||||
def __add__(self, other):
|
||||
return as_symmetric_product_forms(self.tuples + other.tuples)
|
||||
|
||||
def __rmul__(self, other):
|
||||
AS = self.curve
|
||||
F = AS.base_ring
|
||||
if isinstance(other, int) or other in ZZ or other in F:
|
||||
aux_tuples = []
|
||||
for atuple in self.tuples:
|
||||
atuple1 = [other * atuple[0]] + atuple[1:]
|
||||
aux_tuples += [atuple1]
|
||||
return as_symmetric_product_forms(aux_tuples)
|
||||
|
||||
def multiply(self):
|
||||
n = self.n
|
||||
AS = self.curve
|
||||
@ -189,10 +145,12 @@ class as_symmetric_product_forms:
|
||||
result = as_polyform(0*AS.x, n)
|
||||
for atuple in self.tuples:
|
||||
aux_product = Rxyz(1)
|
||||
for fct in atuple:
|
||||
for fct in atuple[1:]:
|
||||
aux_product = aux_product * fct.form
|
||||
aux_product = as_function(AS, aux_product)
|
||||
result += as_polyform(self.coeffs[tuple(atuple)]*aux_product, n)
|
||||
aux_product = as_reduction(AS, aux_product)
|
||||
aux_product = as_function(AS, aux_product)
|
||||
result += as_polyform(atuple[0]*aux_product, n)
|
||||
return result
|
||||
|
||||
def polynomial(self):
|
||||
@ -216,10 +174,11 @@ class as_symmetric_product_forms:
|
||||
def group_action(self, elt):
|
||||
p = self.base_ring.characteristic()
|
||||
n = self.height
|
||||
elt1 = [p^n - a for a in elt]
|
||||
pairs_of_forms2 = [(a.group_action(elt), b.group_action(elt1)) for (a, b) in pairs_of_forms]
|
||||
coeffs2 = {(a.group_action(elt), b.group_action(elt1)) : self.coeffs[(a, b)] for (a, b) in pairs_of_forms}
|
||||
return as_tensor_product_forms(pairs_of_forms2, self.coeffs)
|
||||
aux_tuples = []
|
||||
for atuple in self.tuples:
|
||||
aux_tuple = atuple[0] + [a.group_action(elt) for a in atuple[1:]]
|
||||
aux_tuples += [aux_tuple]
|
||||
return as_symmetric_product_forms(aux_tuples)
|
||||
|
||||
def non_decreasing(L):
|
||||
return all(x<=y for x, y in zip(L, L[1:]))
|
Loading…
Reference in New Issue
Block a user