26 lines
836 B
Python
26 lines
836 B
Python
p = 5
|
|
m = 2
|
|
F = GF(p^2, 'a')
|
|
a = F.gens()[0]
|
|
Rx.<x> = PolynomialRing(F)
|
|
f = x^3 + x^2 + 1
|
|
C_super = superelliptic(f, m)
|
|
Rxy.<x, y> = PolynomialRing(GF(p), 2)
|
|
fArS1 = superelliptic_function(C_super, y*x)
|
|
fArS2 = superelliptic_function(C_super, y*x^2)
|
|
fArS3 = superelliptic_function(C_super, y + x)
|
|
AS1 = as_cover(C_super, [fArS1, fArS2, fArS3], prec=150)
|
|
AS2 = as_cover(C_super, [fArS2, fArS3, fArS1], prec=150)
|
|
print(AS1.genus() == AS2.genus())
|
|
##################
|
|
p = 5
|
|
m = 2
|
|
Rx.<x> = PolynomialRing(GF(p))
|
|
f = x^3 + x^2 + 1
|
|
C_super = superelliptic(f, m)
|
|
Rxy.<x, y> = PolynomialRing(GF(p), 2)
|
|
fArS1 = superelliptic_function(C_super, y*x)
|
|
fArS2 = superelliptic_function(C_super, y*x^2)
|
|
AS1 = as_cover(C_super, [fArS1, fArS2], prec=1000)
|
|
omega = as_form(AS1, 1/y)
|
|
print(omega.expansion_at_infty().valuation()==AS1.exponent_of_different()) |