34 KiB
34 KiB
class superelliptic:
def __init__(self, f, m, p):
Rx.<x> = PolynomialRing(GF(p))
self.polynomial = Rx(f)
self.exponent = m
self.characteristic = p
def __repr__(self):
f = self.polynomial
m = self.exponent
p = self.characteristic
return 'Superelliptic curve with the equation y^' + str(m) + ' = ' + str(f)+' over finite field with ' + str(p) + ' elements.'
def genus(self):
r = self.polynomial.degree()
m = self.exponent
delta = GCD(r, m)
return 1/2*((r-1)*(m-1) - delta + 1)
def basis_holomorphic_differentials(self, j = 'all'):
f = self.polynomial
m = self.exponent
p = self.characteristic
r = f.degree()
delta = GCD(r, m)
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
basis = {}
if j == 'all':
k = 0
for j in range(1, m):
for i in range(1, r):
if (r*j - m*i >= delta):
basis[k] = superelliptic_form(self, Fxy(x^(i-1)/y^j))
k = k+1
return basis
else:
k = 0
for i in range(1, r):
if (r*j - m*i >= delta):
basis[k] = superelliptic_form(self, Fxy(x^(i-1)/y^j))
k = k+1
return basis
def basis_de_rham(self, j = 'all'):
f = self.polynomial
m = self.exponent
p = self.characteristic
r = f.degree()
delta = GCD(r, m)
Rx.<x> = PolynomialRing(GF(p))
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
basis = {}
if j == 'all':
for j in range(1, m):
holo = C.basis_holomorphic_differentials(j)
for k in range(0, len(holo)):
basis[k] = superelliptic_cech(self, holo[k], superelliptic_function(self, Rx(0)))
k = len(basis)
for i in range(1, r):
if (r*(m-j) - m*i >= delta):
s = Rx(m-j)*Rx(x)*Rx(f.derivative()) - Rx(m)*Rx(i)*f
psi = Rx(cut(s, i))
basis[k] = superelliptic_cech(self, superelliptic_form(self, Fxy(psi/y^j)), superelliptic_function(self, Fxy(m*y^j/x^i)))
k = k+1
return basis
def reduction(C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = Fxy(g)
g1 = g.numerator()
g2 = g.denominator()
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
(A, B, C) = xgcd(FxRy(g2), FxRy(y^m - f))
g = FxRy(g1*B/A)
while(g.degree(Rxy(y)) >= m):
d = g.degree(Rxy(y))
G = coff(g, d)
i = floor(d/m)
g = g - G*y^d + f^i * y^(d%m) *G
return(FxRy(g))
def reduction_form(C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = reduction(C, g)
g1 = RR(0)
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
g = FxRy(g)
for j in range(0, m):
if j==0:
G = coff(g, 0)
g1 += G
else:
G = coff(g, j)
g1 += Fxy(y^(j-m)*f*G)
return(g1)
class superelliptic_function:
def __init__(self, C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
self.curve = C
g = reduction(C, g)
self.function = g
def __repr__(self):
return str(self.function)
def jth_component(self, j):
g = self.function
Rxy.<x, y> = PolynomialRing(GF(p), 2)
g = Rxy(g)
return g.coefficient(y^j)
def __add__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 + g2)
return superelliptic_function(C, g)
def __sub__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 - g2)
return superelliptic_function(C, g)
def __mul__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 * g2)
return superelliptic_function(C, g)
def __truediv__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 / g2)
return superelliptic_function(C, g)
def diffn(self):
C = self.curve
f = C.polynomial
m = C.exponent
p = C.characteristic
g = self.function
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
g = Fxy(g)
A = g.derivative(x)
B = g.derivative(y)*f.derivative(x)/(m*y^(m-1))
return superelliptic_form(C, A+B)
class superelliptic_form:
def __init__(self, C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
g = Fxy(reduction_form(C, g))
self.form = g
self.curve = C
def __add__(self, other):
C = self.curve
g1 = self.form
g2 = other.form
g = reduction(C, g1 + g2)
return superelliptic_form(C, g)
def __sub__(self, other):
C = self.curve
g1 = self.form
g2 = other.form
g = reduction(C, g1 - g2)
return superelliptic_form(C, g)
def __repr__(self):
g = self.form
if len(str(g)) == 1:
return str(g) + ' dx'
return '('+str(g) + ') dx'
def jth_component(self, j):
g = self.form
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
Fxy = FractionField(FxRy)
Ryinv = PolynomialRing(Fx)
g = Fxy(g)
g = g(y = 1/y_inv)
g = Ryinv(g)
return coff(g, j)
def is_regular_on_U0(self):
C = self.curve
p = C.characteristic
m = C.exponent
Rx.<x> = PolynomialRing(GF(p))
for j in range(1, m):
if self.jth_component(j) not in Rx:
return 0
return 1
def is_regular_on_Uinfty(self):
C = self.curve
p = C.characteristic
m = C.exponent
f = C.polynomial
r = f.degree()
delta = GCD(m, r)
M = m/delta
R = r/delta
for j in range(1, m):
A = self.jth_component(j)
d = degree_of_rational_fctn(A)
if(-d*M + j*R -(M+1)<0):
return 0
return 1
class superelliptic_cech:
def __init__(self, C, omega, fct):
self.omega0 = omega
self.omega8 = omega - diffn(fct)
self.f = fct
self.curve = C
def __add__(self, other):
C = self.curve
return superelliptic_cech(C, self.omega0 + other.omega0, self.f + other.f)
def __sub__(self, other):
C = self.curve
return superelliptic_cech(C, self.omega0 - other.omega0, self.f - other.f)
def __repr__(self):
return "(" + str(self.omega0) + ", " + str(self.f) + ", " + str(self.omega8) + ")"
def degree_of_rational_fctn(f):
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
f = Fx(f)
f1 = f.numerator()
f2 = f.denominator()
d1 = f1.degree()
d2 = f2.degree()
return(d1 - d2)
def coff(f, d):
lista = f.coefficients(sparse = false)
if len(lista) <= d:
return 0
return lista[d]
def cut(f, i):
R = f.parent()
coeff = f.coefficients(sparse = false)
return sum(R(x^(j-i-1)) * coeff[j] for j in range(i+1, f.degree() + 1))
C = superelliptic(x^3 + x + 2, 7, 5)
C.basis_de_rham()
#C.basis_holomorphic_differentials()
[0;31m---------------------------------------------------------------------------[0m [0;31mTypeError[0m Traceback (most recent call last) [0;32m<ipython-input-20-d63657cf06e3>[0m in [0;36m<module>[0;34m()[0m [1;32m 1[0m [0mC[0m [0;34m=[0m [0msuperelliptic[0m[0;34m([0m[0mx[0m[0;34m**[0m[0mInteger[0m[0;34m([0m[0;36m3[0m[0;34m)[0m [0;34m+[0m [0mx[0m [0;34m+[0m [0mInteger[0m[0;34m([0m[0;36m2[0m[0;34m)[0m[0;34m,[0m [0mInteger[0m[0;34m([0m[0;36m7[0m[0;34m)[0m[0;34m,[0m [0mInteger[0m[0;34m([0m[0;36m5[0m[0;34m)[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;32m----> 2[0;31m [0mC[0m[0;34m.[0m[0mbasis_de_rham[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 3[0m [0;31m#C.basis_holomorphic_differentials()[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [0;32m<ipython-input-19-a65119f7de4f>[0m in [0;36mbasis_de_rham[0;34m(self, j)[0m [1;32m 65[0m [0ms[0m [0;34m=[0m [0mRx[0m[0;34m([0m[0mm[0m[0;34m-[0m[0mj[0m[0;34m)[0m[0;34m*[0m[0mRx[0m[0;34m([0m[0mx[0m[0;34m)[0m[0;34m*[0m[0mRx[0m[0;34m([0m[0mf[0m[0;34m.[0m[0mderivative[0m[0;34m([0m[0;34m)[0m[0;34m)[0m [0;34m-[0m [0mRx[0m[0;34m([0m[0mm[0m[0;34m)[0m[0;34m*[0m[0mRx[0m[0;34m([0m[0mi[0m[0;34m)[0m[0;34m*[0m[0mf[0m[0;34m[0m[0;34m[0m[0m [1;32m 66[0m [0mpsi[0m [0;34m=[0m [0mRx[0m[0;34m([0m[0mcut[0m[0;34m([0m[0ms[0m[0;34m,[0m [0mi[0m[0;34m)[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;32m---> 67[0;31m [0mbasis[0m[0;34m[[0m[0mk[0m[0;34m][0m [0;34m=[0m [0msuperelliptic_cech[0m[0;34m([0m[0mself[0m[0;34m,[0m [0msuperelliptic_form[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mFxy[0m[0;34m([0m[0mpsi[0m[0;34m/[0m[0my[0m[0;34m**[0m[0mj[0m[0;34m)[0m[0;34m)[0m[0;34m,[0m [0msuperelliptic_function[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mFxy[0m[0;34m([0m[0mm[0m[0;34m*[0m[0my[0m[0;34m**[0m[0mj[0m[0;34m/[0m[0mx[0m[0;34m**[0m[0mi[0m[0;34m)[0m[0;34m)[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 68[0m [0mk[0m [0;34m=[0m [0mk[0m[0;34m+[0m[0mInteger[0m[0;34m([0m[0;36m1[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [1;32m 69[0m [0;32mreturn[0m [0mbasis[0m[0;34m[0m[0;34m[0m[0m [0;32m<ipython-input-19-a65119f7de4f>[0m in [0;36m__init__[0;34m(self, C, g)[0m [1;32m 186[0m [0mRxy[0m [0;34m=[0m [0mPolynomialRing[0m[0;34m([0m[0mGF[0m[0;34m([0m[0mp[0m[0;34m)[0m[0;34m,[0m [0mInteger[0m[0;34m([0m[0;36m2[0m[0;34m)[0m[0;34m,[0m [0mnames[0m[0;34m=[0m[0;34m([0m[0;34m'x'[0m[0;34m,[0m [0;34m'y'[0m[0;34m,[0m[0;34m)[0m[0;34m)[0m[0;34m;[0m [0;34m([0m[0mx[0m[0;34m,[0m [0my[0m[0;34m,[0m[0;34m)[0m [0;34m=[0m [0mRxy[0m[0;34m.[0m[0m_first_ngens[0m[0;34m([0m[0;36m2[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [1;32m 187[0m [0mFxy[0m [0;34m=[0m [0mFractionField[0m[0;34m([0m[0mRxy[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 188[0;31m [0mg[0m [0;34m=[0m [0mFxy[0m[0;34m([0m[0mreduction_form[0m[0;34m([0m[0mC[0m[0;34m,[0m [0mg[0m[0;34m)[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 189[0m [0mself[0m[0;34m.[0m[0mform[0m [0;34m=[0m [0mg[0m[0;34m[0m[0;34m[0m[0m [1;32m 190[0m [0mself[0m[0;34m.[0m[0mcurve[0m [0;34m=[0m [0mC[0m[0;34m[0m[0;34m[0m[0m [0;32m<ipython-input-19-a65119f7de4f>[0m in [0;36mreduction_form[0;34m(C, g)[0m [1;32m 112[0m [0;32mif[0m [0mj[0m[0;34m==[0m[0mInteger[0m[0;34m([0m[0;36m0[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 113[0m [0mG[0m [0;34m=[0m [0mcoff[0m[0;34m([0m[0mg[0m[0;34m,[0m [0mInteger[0m[0;34m([0m[0;36m0[0m[0;34m)[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 114[0;31m [0mg1[0m [0;34m+=[0m [0mG[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 115[0m [0;32melse[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 116[0m [0mG[0m [0;34m=[0m [0mcoff[0m[0;34m([0m[0mg[0m[0;34m,[0m [0mj[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx[0m in [0;36msage.structure.element.Element.__add__ (build/cythonized/sage/structure/element.c:10839)[0;34m()[0m [1;32m 1232[0m [0;31m# Left and right are Sage elements => use coercion model[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [1;32m 1233[0m [0;32mif[0m [0mBOTH_ARE_ELEMENT[0m[0;34m([0m[0mcl[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m-> 1234[0;31m [0;32mreturn[0m [0mcoercion_model[0m[0;34m.[0m[0mbin_op[0m[0;34m([0m[0mleft[0m[0;34m,[0m [0mright[0m[0;34m,[0m [0madd[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 1235[0m [0;34m[0m[0m [1;32m 1236[0m [0mcdef[0m [0mlong[0m [0mvalue[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/coerce.pyx[0m in [0;36msage.structure.coerce.CoercionModel.bin_op (build/cythonized/sage/structure/coerce.c:11180)[0;34m()[0m [1;32m 1253[0m [0;31m# We should really include the underlying error.[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [1;32m 1254[0m [0;31m# This causes so much headache.[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [0;32m-> 1255[0;31m [0;32mraise[0m [0mbin_op_exception[0m[0;34m([0m[0mop[0m[0;34m,[0m [0mx[0m[0;34m,[0m [0my[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 1256[0m [0;34m[0m[0m [1;32m 1257[0m [0mcpdef[0m [0mcanonical_coercion[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mx[0m[0;34m,[0m [0my[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;31mTypeError[0m: unsupported operand parent(s) for +: 'Real Field with 53 bits of precision' and 'Fraction Field of Univariate Polynomial Ring in x over Finite Field of size 5'
licz = 0
m = 2
p = 5
R1.<x> = PolynomialRing(GF(p))
f = R1(x^3 + x + 4)
r = f.degree()
C = superelliptic(f, m, p)
for i in range(0, r):
for j in range(1, m):
omega = superelliptic_form(C, x^i/y^j)
if (omega.is_regular_on_U0() and omega.is_regular_on_Uinfty()):
print(omega)
licz += 1
print(licz, C.genus())
print(C.basis_holomorphic_differentials())
[0;31m---------------------------------------------------------------------------[0m [0;31mNameError[0m Traceback (most recent call last) [0;32m<ipython-input-7-1009561bb01d>[0m in [0;36m<module>[0;34m()[0m [1;32m 8[0m [0;32mfor[0m [0mi[0m [0;32min[0m [0mrange[0m[0;34m([0m[0mInteger[0m[0;34m([0m[0;36m0[0m[0;34m)[0m[0;34m,[0m [0mr[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 9[0m [0;32mfor[0m [0mj[0m [0;32min[0m [0mrange[0m[0;34m([0m[0mInteger[0m[0;34m([0m[0;36m1[0m[0;34m)[0m[0;34m,[0m [0mm[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m---> 10[0;31m [0momega[0m [0;34m=[0m [0msuperelliptic_form[0m[0;34m([0m[0mC[0m[0;34m,[0m [0mx[0m[0;34m**[0m[0mi[0m[0;34m/[0m[0my[0m[0;34m**[0m[0mj[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 11[0m [0;32mif[0m [0;34m([0m[0momega[0m[0;34m.[0m[0mis_regular_on_U0[0m[0;34m([0m[0;34m)[0m [0;32mand[0m [0momega[0m[0;34m.[0m[0mis_regular_on_Uinfty[0m[0;34m([0m[0;34m)[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 12[0m [0mprint[0m[0;34m([0m[0momega[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;31mNameError[0m: name 'y' is not defined
p = 5
R.<x, y> = PolynomialRing(GF(p), 2)
g = x^6*y^2 + y^2
omega = diffn(superelliptic_function(C, y^2))
omega.jth_component(0)
3*x^2 + 1
R.<x, y> = PolynomialRing(GF(p), 2)
g1 = x^3*y^7 + x^2*y^9
g2 = x^2*y + y^6
R1.<x> = PolynomialRing(GF(p))
R2 = FractionField(R1)
R3.<y> = PolynomialRing(R2)
xgcd(R3(g1), R3(g2))[1]*R3(g1) + xgcd(R3(g1), R3(g2))[2]*R3(g2)
y
H = HyperellipticCurve(x^5 - x + 1)
H
Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 4*x + 1
f = x^3 + x + 2
f.derivative(x)
-2*x^2 + 1
p = 5
R1.<x> = PolynomialRing(GF(p))
R2 = FractionField(R1)
R3.<y> = PolynomialRing(R2)
g = y^2/x + y/(x+1)
g = 1/y+x/y^2
R3.<z> = PolynomialRing(R2)
g(y = 1/z)
x*z^2 + z
f
x^3 + x + 4
f.coefficient()
[0;31m---------------------------------------------------------------------------[0m [0;31mAttributeError[0m Traceback (most recent call last) [0;32m<ipython-input-62-e054c182ec1a>[0m in [0;36m<module>[0;34m()[0m [0;32m----> 1[0;31m [0mf[0m[0;34m.[0m[0mcoefficient[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx[0m in [0;36msage.structure.element.Element.__getattr__ (build/cythonized/sage/structure/element.c:4614)[0;34m()[0m [1;32m 485[0m [0mAttributeError[0m[0;34m:[0m [0;34m'LeftZeroSemigroup_with_category.element_class'[0m [0mobject[0m [0mhas[0m [0mno[0m [0mattribute[0m [0;34m'blah_blah'[0m[0;34m[0m[0;34m[0m[0m [1;32m 486[0m """ [0;32m--> 487[0;31m [0;32mreturn[0m [0mself[0m[0;34m.[0m[0mgetattr_from_category[0m[0;34m([0m[0mname[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 488[0m [0;34m[0m[0m [1;32m 489[0m [0mcdef[0m [0mgetattr_from_category[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mname[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx[0m in [0;36msage.structure.element.Element.getattr_from_category (build/cythonized/sage/structure/element.c:4723)[0;34m()[0m [1;32m 498[0m [0;32melse[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 499[0m [0mcls[0m [0;34m=[0m [0mP[0m[0;34m.[0m[0m_abstract_element_class[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 500[0;31m [0;32mreturn[0m [0mgetattr_from_other_class[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mcls[0m[0;34m,[0m [0mname[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 501[0m [0;34m[0m[0m [1;32m 502[0m [0;32mdef[0m [0m__dir__[0m[0;34m([0m[0mself[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/cpython/getattr.pyx[0m in [0;36msage.cpython.getattr.getattr_from_other_class (build/cythonized/sage/cpython/getattr.c:2614)[0;34m()[0m [1;32m 392[0m [0mdummy_error_message[0m[0;34m.[0m[0mcls[0m [0;34m=[0m [0mtype[0m[0;34m([0m[0mself[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [1;32m 393[0m [0mdummy_error_message[0m[0;34m.[0m[0mname[0m [0;34m=[0m [0mname[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 394[0;31m [0;32mraise[0m [0mAttributeError[0m[0;34m([0m[0mdummy_error_message[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 395[0m [0mattribute[0m [0;34m=[0m [0;34m<[0m[0mobject[0m[0;34m>[0m[0mattr[0m[0;34m[0m[0;34m[0m[0m [1;32m 396[0m [0;31m# Check for a descriptor (__get__ in Python)[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [0;31mAttributeError[0m: 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint' object has no attribute 'coefficient'
x^3+x+1
x^3 + x + 1
parent(x)
Symbolic Ring
R.<x> = PolynomialRing(GF(5))
R = (x^3+x).parent()
R.<x, y> = PolynomialRing(GF(5))
RR = FractionField(R)
A = RR(1/(x*y))
A.derivative(x)
(-1)/(x^2*y)